...
首页> 外文期刊>Applied Physics Letters >Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe_(48)Rh_(52) and Sm_(0.6)Sr_(0.4)MnO_3
【24h】

Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe_(48)Rh_(52) and Sm_(0.6)Sr_(0.4)MnO_3

机译:在循环磁场中具有一阶相变的材料中的可逆磁热效应:Fe_(48)Rh_(52)和Sm_(0.6)Sr_(0.4)MnO_3

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The magnetocaloric effect (MCE) in an Fe_(48)Rh_(52) alloy and Sm_(0.6)Sr_(0.4)MnO_3 manganite was studied in cyclic magnetic fields. The adiabatic temperature change in the Fe_(48)Rh_(52) alloy for a magnetic field change (ΔB) of 8T and a frequency (f) of 0.13 Hz reaches the highest value of (ΔT_(ad)) of -20.2 K at 298 K. The magnitude of the MCE in Sm_(0.6)Sr_(0.4)MnO_3 reaches ΔT_(ad) = 6.1 K at the same magnetic field change at 143 K. The temperature regions, where a strong MCE is exhibited in an alternating magnetic field, are bounded in both compounds. In the case of the Fe_(48)Rh_(52) alloy, the temperature range for this phenomenon is bounded above by the ferromagnetic to antiferromagnetic transition temperature in the zero field condition during cooling. In the case of the Sm_(0.6)Sr_(0.4)MnO_3 manganite, the temperature range for the MCE is bounded below by the ferromagnetic-paramagnetic transition temperature in zero field during heating. The presence of these phase boundaries is a consequence of the existence of areas of irreversible magnetic-field-induced phase transitions. It is found that the effect of long-term action of thousands of cycles of magnetization/demagnetization degrades the magnetocaloric properties of the Fe_(48)Rh_(52) alloy. This can be explained by the gradual decrease in the size of the ferromagnetic domains and increasing role of the domain walls due to giant magnetostriction at the ferromagnetic to antiferromagnetic transition temperature. The initial magnetocaloric properties can be restored by heating of the material above their Curie temperature.
机译:研究了Fe_(48)Rh_(52)合金和Sm_(0.6)Sr_(0.4)MnO_3锰矿在循环磁场中的磁热效应(MCE)。 Fe_(48)Rh_(52)合金在8T的磁场变化(ΔB)和0.13 Hz的频率(f)时的绝热温度变化在-20.2 K时达到最大值(ΔT_(ad)) 298K。在143 K的相同磁场变化下,Sm​​_(0.6)Sr_(0.4)MnO_3中MCE的大小达到ΔT_(ad)= 6.1K。在交变磁场中表现出强MCE的温度区域场,在这两种化合物中都有界。在Fe_(48)Rh_(52)合金的情况下,该现象的温度范围在上方受到冷却期间零磁场条件下铁磁至反铁磁转变温度的限制。在Sm_(0.6)Sr_(0.4)MnO_3锰矿的情况下,MCE的温度范围在加热过程中受到零磁场下铁磁-顺磁转变温度的限制。这些相界的存在是由于存在不可逆的磁场引起的相变的结果。发现数千个磁化/退磁循环的长期作用的影响使Fe_(48)Rh_(52)合金的磁热性能降低。这可以解释为由于在铁磁到反铁磁转变温度下的巨大磁致伸缩,铁磁畴的尺寸逐渐减小,畴壁的作用增加。可以通过将材料加热到居里温度以上来恢复其初始磁热性能。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第20期|202407.1-202407.5|共5页
  • 作者单位

    Amirkhanov Institute of Physics, Daghestan Scientific Center, Russian Academy of Sciences, 367003 Makhachkala, Russia;

    Amirkhanov Institute of Physics, Daghestan Scientific Center, Russian Academy of Sciences, 367003 Makhachkala, Russia;

    Amirkhanov Institute of Physics, Daghestan Scientific Center, Russian Academy of Sciences, 367003 Makhachkala, Russia;

    Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia;

    Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia;

    Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia;

    Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia;

    Tver State University, 170100 Tver, Russia;

    Lomonosov Moscow State University, 119991 Moscow, Russia;

    Indian Institute of Technology, Madras, 600036 Chennai, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号