首页> 外文期刊>Applied Physics Letters >Uniform second Li ion intercalation in solid state ∈-LiVOPO_4
【24h】

Uniform second Li ion intercalation in solid state ∈-LiVOPO_4

机译:固态均匀锂离子第二嵌入ε-LiVOPO_4

获取原文
获取原文并翻译 | 示例
       

摘要

Full, reversible intercalation of two Li~+ has not yet been achieved in promising VOPO_4 electrodes. A pronounced Li~+ gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x-ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO_4 cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li~+ gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li~+ intercalation is a prerequisite for the formation of intermediate phases Li150VOPO_4 and Li_(1.75)VOPO_4. The evolution from LiVOPO_4 to Li_2VOPO_4 via the intermediate phases is confirmed by direct comparison between O K-edge absorption spectroscopy and density functional theory.
机译:在有希望的VOPO_4电极中,尚未实现两个Li〜+的完全可逆插入。据报道,在低压窗口(即第二锂反应)中有明显的Li +梯度,这被认为是由高压状态下的动力学破坏(即第一锂反应)引起的。在这里,我们结合使用硬和软X射线光电子技术以及吸收光谱技术,对仅在低电压窗口内循环的固态合成LiVOPO_4进行深度剖析。对钒环境的分析没有发现Li〜+梯度的证据,再加上几乎完全的理论容量证实了高压窗口中动力学的破坏是阻碍全部两个锂插入的原因。此外,我们认为均匀的Li〜+嵌入是形成中间相Li150VOPO_4和Li_(1.75)VOPO_4的前提。通过在O K边缘吸收光谱学和密度泛函理论之间的直接比较,证实了从LiVOPO_4到Li_2VOPO_4经由中间相的演变。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第5期|053904.1-053904.4|共4页
  • 作者单位

    Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902, USA;

    Materials Science and Engineering, Binghamton University, Binghamton, New York 13902, USA;

    X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive 0448, La Jolla, California 92093, USA;

    NECCES, Binghamton University, Binghamton, New York 13902, USA;

    Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902, USA;

    NECCES, Binghamton University, Binghamton, New York 13902, USA;

    Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom;

    Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom;

    Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive 0448, La Jolla, California 92093, USA;

    X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    NECCES, Binghamton University, Binghamton, New York 13902, USA;

    Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902, USA ,Materials Science and Engineering, Binghamton University, Binghamton, New York 13902, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号