首页> 外文期刊>Applied Physics Letters >Enhanced actuation of nanocrystalline diamond microelectromechanical disk resonators with AlN layers
【24h】

Enhanced actuation of nanocrystalline diamond microelectromechanical disk resonators with AlN layers

机译:具有AlN层的纳米晶金刚石微机电盘谐振器的增强驱动

获取原文
获取原文并翻译 | 示例
           

摘要

A great potential of the use of aluminum nitride (AlN) to enhance the actuation of nanocrystalline diamond (NCD) microelectromechanical system disk resonators is revealed. A disk resonator with a unimorph (AlN/NCD) structure is fabricated by depositing a c-axis oriented AlN on a capacitive NCD disk resonator. The unimorph resonator is piezoelectrically actuated with flexural whispering gallery modes with a relatively large electrode gap spacing, i.e., the spacing which is greater than 1 μm, although this is not possible for the capacitive NCD disk resonator. This result is explained by a finite element method simulation where the piezoelectric actuation turns out to be more effective than the capacitive actuation when the electrode gap spacing is >0.8μm. The simulation also shows that the electrode gap spacing required for the capacitive actuation to be more effective than the piezoelectric actuation exponentially decreases when the resonator dimension is scaled down for higher frequency operations. Our study indicates that the use of AlN is promising to decrease impedance levels of NCD disk resonators especially for their higher frequency operations.
机译:揭示了使用氮化铝(AlN)增强纳米晶金刚石(NCD)微机电系统盘谐振器的驱动的巨大潜力。通过在电容性NCD磁盘谐振器上沉积取向为c轴的AlN来制造具有单晶(AlN / NCD)结构的磁盘谐振器。尽管具有电容式NCD盘谐振器是不可能的,但单压电晶片谐振器是通过具有较小电极间隙间距(即大于1μm的间距)的弯曲回音壁模式压电驱动的。通过有限元方法仿真可以解释此结果,其中当电极间隙间距>0.8μm时,压电驱动比电容驱动更有效。仿真还表明,当谐振器尺寸缩小以进行更高频率的操作时,电容致动要比压电致动更有效所需的电极间隙间距呈指数减小。我们的研究表明,使用AlN有望降低NCD盘式谐振器的阻抗水平,特别是对于其较高频率的操作。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第17期|171903.1-171903.4|共4页
  • 作者单位

    Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany,Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;

    Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany,Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;

    Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany;

    Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany,Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;

    Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany;

    Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany;

    Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany;

    Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany,Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;

    Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号