首页> 外文期刊>Applied Physics Letters >Negative spin Hall magnetoresistance of Pt on the bulk easy-plane antiferromagnet NiO
【24h】

Negative spin Hall magnetoresistance of Pt on the bulk easy-plane antiferromagnet NiO

机译:块易平面反铁磁体NiO上Pt的负自旋霍尔磁阻

获取原文
获取原文并翻译 | 示例
       

摘要

We report on spin Hall magnetoresistance (SMR) measurements of Pt Hall bars on antiferromagnetic NiO(111) single crystals. An SMR with a sign opposite to conventional SMR is observed over a wide range of temperatures as well as magnetic fields stronger than 0.25 T. The negative sign of the SMR can be explained by the alignment of magnetic moments being almost perpendicular to the external magnetic field within the easy plane (111) of the antiferromagnet. This correlation of magnetic moment alignment and the external magnetic field direction is realized just by the easy-plane nature of the material without the need of any exchange coupling to an additional ferromagnet. The SMR signal strength decreases with increasing temperature, primarily due to the decrease in Néel order by including fluctuations. An increasing magnetic field increases the SMR signal strength as there are fewer domains, and the magnetic moments are more strongly manipulated at high magnetic fields. The SMR is saturated at an applied magnetic field of 6 T, resulting in a spin-mixing conductance of ∼10~(18) Ω~(-1)m~(-2), which is comparable to that of Pt on insulating ferrimagnets such as yttrium iron garnet. An argon plasma treatment doubles the spin-mixing conductance.
机译:我们报告了反铁磁NiO(111)单晶上的Pt霍尔棒的自旋霍尔磁阻(SMR)测量。在宽广的温度范围以及超过0.25 T的磁场中观察到SMR具有与传统SMR相反的符号。SMR的负号可以通过磁矩几乎垂直于外部磁场的排列来解释在反铁磁体的容易平面(111)内。磁矩对准与外部磁场方向之间的这种关联仅通过材料的易平面特性即可实现,而无需与附加铁磁体的任何交换耦合。 SMR信号强度随着温度的升高而降低,这主要归因于通过包含波动使Néel阶数降低。磁场的增加会增加SMR信号的强度,因为磁畴越少,在高磁场下磁矩的作用就越强。 SMR在施加的6 T磁场下达到饱和,导致自旋混合电导为〜10〜(18)Ω〜(-1)m〜(-2),与绝缘铁氧体上的Pt相当。如钇铁石榴石。氩等离子体处理使自旋混合电导率加倍。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第5期|052409.1-052409.5|共5页
  • 作者单位

    Physics of Nanodevices, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, Netherlands;

    Physics of Nanodevices, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, Netherlands,Institute of Experimental and Applied Physics, University of Regensburg, Universitätsstr. 31, Regensburg, Germany;

    Physics of Nanodevices, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, Netherlands;

    Physics of Nanodevices, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, Netherlands,University of Twente, Drienerlolaan 5, Enschede, Netherlands;

    Physics of Nanodevices, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号