首页> 外文期刊>Applied Physics Letters >31-mode piezoelectric micromachined ultrasonic transducer with PZT thick film by granule spraying in vacuum process
【24h】

31-mode piezoelectric micromachined ultrasonic transducer with PZT thick film by granule spraying in vacuum process

机译:真空过程中颗粒喷涂PZT厚膜的31模式压电微加工超声换能器

获取原文
获取原文并翻译 | 示例
           

摘要

A piezoelectric micromachined ultrasonic transducer (pMUT) is an ideal device for portable medical diagnosis systems, intravascular ultrasound systems, and ultrasonic cameras because of its favorable characteristics including small size, acoustic impedance matching with the body, low power consumption, and simple integration with the systems. Despite these advantages, practical applications are limited because of insufficient acoustic pressure of the pMUT caused by the thin active piezoelectric layer. Here, we report the fabrication of a thick piezoelectric Pb(Zr,Ti)O_3 (PZT) film-based pMUT device having high deflection at low driving voltage using the granule spraying in vacuum (GSV) process. Pre-patterned high-density thick (exceeding 8 μm) PZT films were grown on 6-inch-diameter Si/SiO_2/Ti/Pt silicon-on-insulator wafers at room temperature at a high deposition rate of ~5 μm min~(-1). The fabrication process using the proposed GSV process was simple and fast, and the deflection of the pMUT exhibited a high value of 0.8 μm.
机译:压电微机械超声换能器(pMUT)是便携式医疗诊断系统,血管内超声系统和超声照相机的理想设备,因为它具有良好的特性,包括体积小,与身体的声阻抗匹配,低功耗以及与传感器的简单集成。系统。尽管有这些优点,但由于薄的有源压电层引起的pMUT声压不足,实际应用受到了限制。在这里,我们报道了使用真空中的颗粒喷涂(GSV)工艺在低驱动电压下具有高挠度的厚压电Pb(Zr,Ti)O_3(PZT)膜基pMUT器件的制造。在室温下,以约5μmmin〜的高沉积速率在6英寸直径的Si / SiO_2 / Ti / Pt绝缘体上硅晶片上生长预图案化的高密度厚(超过8μm)PZT膜。 -1)。使用提出的GSV工艺的制造工艺简单且快速,并且pMUT的挠度表现出0.8μm的高值。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第21期|212903.1-212903.5|共5页
  • 作者单位

    Department of Robotics Engineering, DGIST, 50-1 Sang-ri, Hyeongpung-myeon, Dalseong-gun, Daegu 42988, South Korea,DGIST-ETH Microrobot Research Center, DGIST, 50-1 Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea;

    Funtional Ceramics Group, Korea Institute of Material Science, 797 Changwondaero, Seongsangu, Changwon 51508, South Korea;

    Funtional Ceramics Group, Korea Institute of Material Science, 797 Changwondaero, Seongsangu, Changwon 51508, South Korea;

    Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA;

    Department of Robotics Engineering, DGIST, 50-1 Sang-ri, Hyeongpung-myeon, Dalseong-gun, Daegu 42988, South Korea,DGIST-ETH Microrobot Research Center, DGIST, 50-1 Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea;

    Department of Robotics Engineering, DGIST, 50-1 Sang-ri, Hyeongpung-myeon, Dalseong-gun, Daegu 42988, South Korea,DGIST-ETH Microrobot Research Center, DGIST, 50-1 Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea;

    Funtional Ceramics Group, Korea Institute of Material Science, 797 Changwondaero, Seongsangu, Changwon 51508, South Korea;

    Department of Robotics Engineering, DGIST, 50-1 Sang-ri, Hyeongpung-myeon, Dalseong-gun, Daegu 42988, South Korea,DGIST-ETH Microrobot Research Center, DGIST, 50-1 Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号