首页> 外文期刊>Applied numerical mathematics >A posteriori error estimates and adaptivity for the discontinuous Galerkin solutions of nonlinear second-order initial-value problems
【24h】

A posteriori error estimates and adaptivity for the discontinuous Galerkin solutions of nonlinear second-order initial-value problems

机译:非线性二阶初值问题的不连续Galerkin解的后验误差估计和适应性

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we propose and analyze an efficient and reliable a posteriori error estimator of residual-type for the discontinuous Galerkin (DG) method applied to nonlinear second-order initial-value problems for ordinary differential equations. This estimator is simple, efficient, and asymptotically exact. We use our recent optimal L~2 error estimates and superconvergence results of Baccouch [15] to show that the significant parts of the DG discretization errors are proportional to the (p+1)-degree right Radau polynomial, when polynomials of total degree not exceeding p are used. These new results allow us to construct a residual-based a posteriori error estimator which is obtained by solving a local residual problem with no initial condition on each element. We prove that, for smooth solutions, the proposed a posteriori error estimator converges to the actual error in the L~2-norm with order of convergence p+2. Computational results indicate that the theoretical order of convergence is sharp. By adding the a posteriori error estimate to the DG solution, we obtain a post-processed approximation which superconverges with order p+2 in the L~2-norm. Moreover, we demonstrate the effectiveness of the this error estimator. Finally, we present a local adaptive mesh refinement (AMR) procedure that makes use of our local a posteriori error estimate. Our proofs are valid for arbitrary regular meshes and for P~p polynomials with p≥1. Several numerical results are presented to validate the theoretical results.
机译:在本文中,我们提出并分析了适用于常微分方程非线性二阶初值问题的间断Galerkin(DG)方法的残差型后验误差估计器。该估计器简单,有效且渐近精确。我们使用最近的最优L〜2误差估计和Baccouch [15]的超收敛结果表明,当总阶多项式不等于时,DG离散误差的重要部分与(p + 1)度右Radau多项式成比例。超过p被使用。这些新结果使我们能够构造基于残差的后验误差估计量,该估计量是通过求解局部残差问题而获得的,而每个元素都没有初始条件。我们证明,对于光滑解,提出的后验误差估计器收敛到L〜2-范数中的实际误差,收敛阶数为p + 2。计算结果表明收敛的理论顺序是尖锐的。通过将后验误差估计值添加到DG解中,我们获得了在L〜2范数中以p + 2阶超收敛的后处理近似值。此外,我们证明了该误差估计器的有效性。最后,我们提出了一种局部自适应网格细化(AMR)程序,该程序利用了我们的局部后验误差估计。我们的证明适用于任意规则网格和p≥1的P〜p多项式。几个数值结果被提出来验证理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号