...
首页> 外文期刊>Applied Mechanics and Materials >Contribution of Additive Manufacturing of Rare Earth Material to the Increase in Performance and Resource Efficiency of Permanent Magnets
【24h】

Contribution of Additive Manufacturing of Rare Earth Material to the Increase in Performance and Resource Efficiency of Permanent Magnets

机译:稀土材料增材制造对永磁体性能和资源效率提高的贡献

获取原文
获取原文并翻译 | 示例
           

摘要

Powerful permanent magnets are of essential meaning for electric drives as well as for environmental friendly energy conversion in general. The main requirements for these applications are high energy products, coercivity and remanent polarization, thermal stability as well as affordable price. As state of the art, rare earth permanent magnets, frequently consisting of NdFeB based alloys, meet these requirements. When complex geometric shapes like arcs, shells or freeform surfaces are required by the application, a trade-off has to be taken into account between magnetic performance and post magnet-fabrication processing steps. Either bonded magnets can be produced with great variety of geometries while accepting low magnetic performance and low temperature stability due to a significant amount of nonmagnetic plastic binder matrix, or sintered blocks with great magnetic performance have to be machined to the specified shape accepting great effort for grinding or wire cutting as well as a significant loss of valuable material. To overcome the drawback of both conventional established magnet manufacturing processes, Laser Beam Melting (LBM) is investigated to provide an alternative process route for magnet production. This innovative Additive Manufacturing (AM) process offers tool less production of nearly any imaginable geometry by use of a metal powder bed fusing process. Due to the challenging material behavior, a detailed parameter study is presented including a systematic design of experiment (DoE) approach. The connection between process parameters, density and key performance indicators on the B/H-curve is broken down.
机译:强大的永磁体对于电力驱动以及一般而言对环境友好的能量转换至关重要。这些应用的主要要求是高能产品,矫顽力和剩余极化,热稳定性以及可承受的价格。作为现有技术,稀土永磁体通常由NdFeB基合金组成,可以满足这些要求。当应用需要复杂的几何形状(例如弧形,壳形或自由曲面)时,必须在磁性能和磁体制造后的加工步骤之间进行权衡。由于大量的非磁性塑料粘合剂基体,既可以制造出具有多种几何形状的粘结磁体,又可以接受低磁性能和低温稳定性,或者必须将具有强磁性能的烧结块加工成指定的形状,并且需要付出巨大的努力。磨削或线切割以及大量宝贵材料的损失。为了克服两种常规既定磁体制造工艺的缺点,对激光束熔化(LBM)进行了研究,以提供一种替代的磁体生产工艺路线。这种创新的增材制造(AM)工艺通过使用金属粉末床熔合工艺,几乎无需考虑任何几何形状,可减少工具的生产。由于具有挑战性的材料行为,提出了详细的参数研究,包括系统的实验设计(DoE)方法。 B / H曲线上的过程参数,密度和关键性能指标之间的联系已断开。

著录项

  • 来源
    《Applied Mechanics and Materials》 |2018年第2018期|135-141|共7页
  • 作者单位

    Institute for Factory Automation and Production Systems, Friedrich-Alexander University Erlangen-Nuremberg, Fuerther Straße 246b, 90429 Nuremberg, Germany;

    Institute for Factory Automation and Production Systems, Friedrich-Alexander University Erlangen-Nuremberg, Fuerther Straße 246b, 90429 Nuremberg, Germany;

    Institute for Factory Automation and Production Systems, Friedrich-Alexander University Erlangen-Nuremberg, Fuerther Straße 246b, 90429 Nuremberg, Germany;

    Institute for Factory Automation and Production Systems, Friedrich-Alexander University Erlangen-Nuremberg, Fuerther Straße 246b, 90429 Nuremberg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    LBM; SLM; Magnet Production; Additive Manufacturing; NdFeB; Rare Earth Magnet; Resource Efficiency; DoE;

    机译:LBM;SLM;磁铁生产;添加剂制造;钕铁硼;稀土磁铁资源效率;能源部;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号