首页> 外文学位 >Permanent magnet materials based on iron-rare earth-carbon and iron-titanium-rare earth alloys.
【24h】

Permanent magnet materials based on iron-rare earth-carbon and iron-titanium-rare earth alloys.

机译:基于稀土铁碳合金和稀土铁钛合金的永磁材料。

获取原文
获取原文并翻译 | 示例

摘要

To develop two prospective alloy systems Fe-R-C and Fe-Ti-R for new permanent magnet materials, the evolvement of hard magnetic phases, i.e., Fe{dollar}sb{lcub}14{rcub}{dollar}R{dollar}sb2{dollar}C and (Fe,Ti){dollar}sb{lcub}12{rcub}{dollar}R, the effect of alloying and heat treatment on the magnetic properties were investigated. The high intrinsic coercivity often exceeding 15 kOe in the Fe-Dy-C ingots is attributed to both find cells ({dollar}<{dollar}10 {dollar}mu{dollar}m) of Fe{dollar}sb{lcub}14{rcub}{dollar}Dy{dollar}sb2{dollar}C transformed in the temperature range of 850{dollar}spcirc{dollar}C to below 1200{dollar}spcirc{dollar}C and a negligible amount of grain boundary phase. The thin grain boundary phase at which the domain walls are trapped (or pinned) has a composition near that of the Fe{dollar}sb{lcub}14{rcub}{dollar}Dy{dollar}sb2{dollar}C phase, but its structure is not that of a recognized binary Fe-Dy or ternary Fe-Dy-C compound.; The extremely retarded formation of Fe{dollar}sb{lcub}14{rcub}{dollar}Nd{dollar}sb2{dollar}C in Fe-Nd-C alloys is due to the difficulties in nucleation, and Fe{dollar}sb{lcub}14{rcub}{dollar}Nd{dollar}sb2{dollar}C is much less stable than Fe{dollar}sb{lcub}14{rcub}{dollar}Dy{dollar}sb2{dollar}C so that it forms only in the narrow temperature range between 800{dollar}spcirc{dollar}C and 900{dollar}spcirc{dollar}C. However, small additions of B, Cu, or both, into the Fe-Nd (or Pr)-C alloys promote the formation of Fe{dollar}sb{lcub}14{rcub}{dollar}Nd{dollar}sb2{dollar}C (or Fe{dollar}sb{lcub}14{rcub}{dollar}Pr{dollar}sb2{dollar}C). By these additions the production of practical quantities of magnetically hard Fe{dollar}sb{lcub}14{rcub}{dollar}Nd{dollar}sb2{dollar}C (or Fe{dollar}sb{lcub}14{rcub}{dollar}Pr{dollar}sb2{dollar}C) has become feasible, although the coercivities are in the low-kOe range mainly due to the different nature of grain boundary phase from the of Fe-Dy-C alloys.; The tetragonal (Fe,Ti){dollar}sb{lcub}12{rcub}{dollar}R compounds are crystallized from the melt via peritectic reaction. The extension of the primary Fe field in Fe-Ti-R is as same as that in Fe-R-C, i.e., it increases in the direction Dy {dollar}to{dollar} Ce. In Fe-Ti-Nd and Fe-Ti-Sm, the Ti-stabilized Fe{dollar}sb7{dollar}R phase (hexagonal Cu{dollar}sb7{dollar}Tb type) is newly observed. The phase Fe{dollar}sb{lcub}11{rcub}{dollar}TiR in these systems either is stoichiometric or has a negligible homogeneity range. In Fe-Ti-Nd Fe{dollar}sb{lcub}11{rcub}{dollar}TiNd is stable only above 1000{dollar}spcirc{dollar}C. Below 1000{dollar}spcirc{dollar}C, it decomposes according to Fe{dollar}sb{lcub}11{rcub}{dollar}TiNd {dollar}to{dollar} Fe{dollar}sb{lcub}17{rcub}{dollar}Nd{dollar}sb2{dollar} + Fe{dollar}sb2{dollar}Ti + Fe. In Fe-Ti-Sm the high-anisotropy phase Fe{dollar}sb{lcub}11{rcub}{dollar}TiSm does not undergo this decomposition down to 700{dollar}spcirc{dollar}C, but it is cut off from higher Sm alloys by the tie line between Fe{dollar}sb{lcub}17{rcub}{dollar}Sm{dollar}sb2{dollar} and Fe{dollar}sb2{dollar}Ti. A new phase Fe{dollar}sb{lcub}9.5{rcub}{dollar}Ti{dollar}sb{lcub}1.5{rcub}{dollar}Sm has the structure of tetragonal (Mn,Ni){dollar}sb{lcub}11{rcub}{dollar}Ce with a = 0.8253, c = 0.4825 nm; it has no permanent magnetic moment at room temperature.
机译:为了开发两种用于新型永磁材料的准合金系统Fe-RC和Fe-Ti-R,硬磁相的演变即Fe {dollar} sb {lcub} 14 {rcub} {dollar} R {dollar} sb2 {C}和(Fe,Ti){sb {lcub} 12 {rcub} {dollar} R,研究了合金化和热处理对磁性能的影响。 Fe-Dy-C铸锭的高固有矫顽力通常超过15 kOe,这归因于Fe {dollar} sb {lcub} 14的两个发现晶胞({dollar} <{dollar} 10 {dollar} mu {dollar} m)14 {rcub} {dollar} Dy {dollar} sb2 {dollar} C在850 {spcirc {dollar} C的温度范围内转变为1200 {dollar {dollar} C以下,并且晶界相的量可忽略不计。畴壁被俘获(或固定)的薄晶界相具有接近Fe {dollar} sb {lcub} 14 {rcub} {dollar} Dy {dollar} sb2 {dollar} C相的组成,但其结构不是公认的二元Fe-Dy或三元Fe-Dy-C化合物的结构。 Fe-Nd-C合金中Fe {dollarssb {lcub} 14 {rcub} {dollar} Nd {dollar} sb2 {dollar} C的极慢形成是由于成核的困难,而Fe {dollar} sb {lcub} 14 {rcub} {dollar} Nd {dollar} sb2 {dollar} C的稳定性远不如Fe {dollar} sb {lcub} 14 {rcub} {dollar} Dy {dollar} sb2 {dollar} C稳定,因此它仅在800至40摄氏度之间的狭窄温度范围内形成。但是,向Fe-Nd(或Pr)-C合金中少量添加B,Cu或同时添加这两种元素会促进Fe {dollar} sb {lcub} 14 {rcub} {dollar} Nd {dollar} sb2 {dollar的形成} C(或Fe {dollar} sb {lcub} 14 {rcub} {dollar} Pr {dollar} sb2 {dollar} C)。通过这些添加,可以生产实际数量的磁性硬Fe {dollar} sb {lcub} 14 {rcub} {dollar} Nd {dollar} sb2 {dollar} C(或Fe {dollar} sb {lcub} 14 {rcub} {尽管矫顽力在低kOe范围内,这主要是由于晶界相与Fe-Dy-C合金的晶界性质不同,但美元{Pr {dollar} sb2 {dollar} C)变得可行。通过包晶反应从熔体中结晶出四方的(Fe,Ti){sb {lcub} 12 {rcub} {dollar} R化合物。 Fe-Ti-R中的初生Fe场的扩展与Fe-R-C中的相同,即它在Dy到Ce的方向上增加。在Fe-Ti-Nd和Fe-Ti-Sm中,新观察到了Ti稳定的Fe {dollar} sb7 {dollar} R相(六角形Cu {dollar} sb7 {dollar} Tb型)。这些系统中的Fe {dollar} sb {lcub} 11 {rcub} {dollar} TiR相要么是化学计量的,要么均相范围可忽略不计。在Fe-Ti-Nd中,Fe {dollar} sb {lcub} 11 {rcub} {dollar} TiNd仅在高于1000 {dollar} spcirc {dollar} C时稳定。低于1000 {dollar} spcirc {dollar} C,它会根据Fe {dollar} sb {lcub} 11 {rcub} {dollar} TiNd {dollar} to {dollar} Fe {dollar} sb {lcub} 17 {rcub}分解。 {dol} Nd {dollar} sb2 {dollar} + Fe {dollar} sb2 {dollar} Ti + Fe。在Fe-Ti-Sm中,高各向异性相Fe {dollar} sb {lcub} 11 {rcub} {dollar} TiSm不会分解到700 {dollar} spcirc {dollar} C分解,但从通过Fe {dollar} sb {lcub} 17 {rcub} {dollar} Sm {dollar} sb2 {dollar}和Fe {dollar} sb2 {dollar} Ti之间的连接线获得更高的Sm合金。 Fe {dollar} sb {lcub} 9.5 {rcub} {dollar} Ti {dollar} sb {lcub} 1.5 {rcub} {dollar} Sm的新相具有四方结构(Mn,Ni){dol} sb {lcub } 11 {rcub} {dollar} Ce,a = 0.8253,c = 0.4825 nm;在室温下没有永久磁矩。

著录项

  • 作者

    Jang, Taesuk.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 1991
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

  • 入库时间 2022-08-17 11:50:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号