首页> 外文期刊>Applied Mathematical Modelling >Fluid sensing using microcantilevers: From physics-based modeling to deep learning
【24h】

Fluid sensing using microcantilevers: From physics-based modeling to deep learning

机译:使用微电路仪的流体感应:从基于物理学建模到深度学习

获取原文
获取原文并翻译 | 示例
           

摘要

In-situ measurements of the viscosity and density of small volumes of liquids are required in several industrial applications. MEMS sensors deploying vibrating microstructures constitute an attractive alternative given the significant impact of the surrounding liquid on their dynamic behavior. In this work, we combine physics-based modeling approaches and deep learning techniques to simultaneously estimate the density and viscosity of liquids from the resonance frequencies and quality factors of immersed microcantilevers. The physics-based model is first validated by comparing the simulated resonance frequencies and quality factors of immersed microcantilevers to those obtained from experiments conducted on a large variety of liquids. Then, we use the simulations results to train deep neutral networks to learn the mapping from the data space to the parameter space. The deep learning method shows high prediction accuracy provided that there is enough independent input data, shows no bias in the predicted values, and provides the results instantaneously. The optimal accuracy in the estimation of the liquid viscosity and density is achieved when the first resonance frequency and corresponding quality factor are used as inputs.
机译:在若干工业应用中需要出于原位测量粘度和小体积液体的密度。展开振动微观结构的MEMS传感器构成了一个有吸引力的替代方案,给出了周围液体对其动态行为的显着影响。在这项工作中,我们将基于物理的建模方法和深度学习技术相结合,同时估计液体的液体密度和粘度与浸入的微电子的共振频率和质量因子。首先通过将浸入的微膜的模拟共振频率和质量因子与在大量液体上进行的实验中获得的实验获得的模拟的谐振频率和质量因子来验证基于物理学的模型。然后,我们使用模拟结果来培训深度中性网络,以从数据空间到参数空间的映射。深度学习方法显示了高预测准确性,条件是有足够的独立输入数据,在预测值中没有显示偏差,并瞬间提供结果。当第一谐振频率和相应的质量因子用作输入时,实现液体粘度和密度估计的最佳精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号