...
首页> 外文期刊>Applied Mathematical Modelling >A semi-analytical solution for shallow tunnels with radius-iterative-approach in semi-infinite space
【24h】

A semi-analytical solution for shallow tunnels with radius-iterative-approach in semi-infinite space

机译:半无限空间中具有半径迭代法的浅埋隧道的半解析解

获取原文
获取原文并翻译 | 示例
           

摘要

This study presents a semi-analytical elastic-plastic solution for a shallow tunnel subjected to ground loss in the strain-softening surrounding rock. The most important contribution is the radius-iterative-approach in which the initial plastic radius is first determined by the strain continuity boundary condition on the elastic-plastic interface and then corrected to the precise one. The corrected approach follows three steps: (1) Applying the radius increment technique to semi-infinite space (2) Carrying out the plastic radius correction by using iteration method from the elastic-plastic interface to the tunnel wall. (3) If the calculated convergence value is equal to the convergence value on the tunnel wall, the accurate determination of the plastic region, stresses, and displacements, of the whole half plane, can be derived consequently. All the results compare favorably with numerical simulation results. The study completes the theoretical framework for addressing the fundamental problem of shallow tunnels excavated in the semi-infinite space and also provides a useful theoretical tool for potential application on the tunnel and underground engineering problems. (C) 2019 Elsevier Inc. All rights reserved.
机译:这项研究提出了一种在应变软化围岩中遭受地面损失的浅埋隧道的半解析弹塑性解。最重要的贡献是半径迭代法,其中初始塑性半径首先由弹塑性界面上的应变连续性边界条件确定,然后再修正为精确的半径。校正方法分为三个步骤:(1)在半无限空间中应用半径增量技术(2)从弹塑性界面到隧道墙的迭代方法,进行塑性半径校正。 (3)如果计算出的收敛值等于隧道壁上的收敛值,则可以得出整个半平面塑性区域,应力和位移的准确确定。所有结果均与数值模拟结果相吻合。该研究为解决在半无限空间内开挖的浅埋隧道的基本问题提供了理论框架,并为潜在的隧道和地下工程问题的应用提供了有用的理论工具。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号