首页> 外文期刊>Applied Mathematical Modelling >A comparison of adaptive time stepping methods for coupled flow and deformation modeling
【24h】

A comparison of adaptive time stepping methods for coupled flow and deformation modeling

机译:流动和变形耦合的自适应时间步长方法的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Many subsurface reservoirs compact or subside due to production-induced pressure changes. Numerical simulation of this compaction process is important for predicting and preventing well-failure in deforming hydrocarbon reservoirs. However, development of sophisticated numerical simulators for coupled fluid flow and mechanical deformation modeling requires a considerable manpower investment. This development time can be shortened by loosely coupling pre-existing flow and deformation codes via an interface. These codes have an additional advantage over fully-coupled simulators in that fewer flow and mechanics time steps need to be taken to achieve a desired solution accuracy. Specifically, the length of time before a mechanics step is taken can be adapted to the rate of change in output parameters (pressure or displacement) for the particular application problem being studied. Comparing two adaptive methods (the local error method - a variant of Runge-Kutta-Fehlberg for solving ode's - and the pore pressure method) to a constant step size scheme illustrates the considerable cost savings of adaptive time stepping for loose coupling. The methods are tested on a simple loosely-coupled simulator modeling single-phase flow and linear elastic deformation. For the Terzaghi consolidation problem, the local error method achieves similar accuracy to the constant step size solution with only one third as many mechanics solves. The pore pressure method is an inexpensive adaptive method whose behavior closely follows the physics of the problem. The local error method, while a more general technique and therefore more expensive per time step, is able to achieve excellent solution accuracy overall.
机译:由于生产引起的压力变化,许多地下储层被压实或沉降。该压实过程的数值模拟对于预测和防止油气藏变形中的油井破坏非常重要。然而,开发用于耦合流体流动和机械变形建模的复杂数值模拟器需要大量的人力投资。通过接口松散耦合已有的流动和变形代码可以缩短开发时间。与完全耦合的仿真器相比,这些代码还有一个额外的优势,即为实现所需的解决方案精度,只需花费较少的流程和力学时间即可。特别地,对于正在研究的特定应用问题,采取机械步骤之前的时间长度可以适应输出参数的变化率(压力或位移)。将两种自适应方法(局部误差方法(一种用于求解ode的Runge-Kutta-Fehlberg的变体)和孔隙压力方法)与恒定步长方案进行比较,可以说明自适应时间步长用于松耦合的可观成本节省。这些方法在模拟单相流和线性弹性变形的简单松耦合模拟器上进行了测试。对于Terzaghi固结问题,局部误差方法的精度与恒定步长解决方案的精度相近,而许多机械师只能解决三分之一的精度。孔隙压力法是一种廉价的自适应方法,其行为严格遵循问题的物理原理。局部误差方法虽然是一种更通用的技术,但因此每个时间步更昂贵,但它总体上可以实现出色的求解精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号