...
首页> 外文期刊>Applied Energy >Predictive temperature modeling and experimental investigation of ultrasonic vibration-assisted pelleting of wheat straw
【24h】

Predictive temperature modeling and experimental investigation of ultrasonic vibration-assisted pelleting of wheat straw

机译:小麦秸秆超声振动辅助制粒的预测温度模型与实验研究

获取原文
获取原文并翻译 | 示例

摘要

Ethanol made from cellulosic biomass is an alternative to petroleum-based liquid transportation fuels. However, large-scale manufacturing of cellulosic ethanol is hindered by several factors. The main factor driving this hindrance is the low density of cellulosic biomass. Ultrasonic vibration-assisted pelleting can effectively increase cellulosic biomass density by compressing raw biomass into pellets, reducing transportation and storage costs. Pelleting temperature has also been identified as a key parameter influencing pellet quality. In this paper, a predictive mathematical model of pelleting temperature using spatio-temporal dynamics was developed to study multiple factors affecting temperature rise through pelleting. The mathematical model was then validated with experimental data along with high goodness of fit (average R-2 > 0.83). Effects of three input variables (ultrasonic power, pelleting pressure, and pellet weight) on temperature ranges (highest temperature point and lowest temperature point) were investigated using a 2(3) (two levels and three variables) factorial design. Our results indicated that friction between mold and biomass has a marginal effect on the temperature profiles, and demonstrated the highest and lowest temperature points are significantly correlated to the input variables (ultrasonic power, pellet weight, and pellet pressure) and their interaction effects. The proposed mathematical model delivers a new guideline by avoiding unnecessary experiments and provides a systematic understanding of temperattire profiles during the biomass pelleting process. Knowledge transferred from the current study fulfills the literature gap between mathematical modeling research and an optimal, ultrasonic, vibration-assisted pelleting process; and, therefore, provides insight into improving biomass quality in energy-related ultrasonic manufacturing.
机译:由纤维素生物质制得的乙醇是石油基液体运输燃料的替代品。但是,纤维素乙醇的大规模生产受到几个因素的阻碍。造成这种障碍的主要因素是纤维素生物质的低密度。超声振动辅助制粒可以通过将原始生物质压缩为颗粒,从而有效地提高纤维素生物质的密度,从而降低运输和存储成本。制粒温度也已被确定为影响颗粒质量的关键参数。在本文中,建立了使用时空动力学的颗粒温度预测数学模型,以研究影响颗粒温度升高的多个因素。然后用实验数据以及高拟合优度验证了数学模型(平均R-2> 0.83)。使用2(3)(两个级别和三个变量)析因设计,研究了三个输入变量(超声波功率,制粒压力和制粒重量)对温度范围(最高温度点和最低温度点)的影响。我们的结果表明,模具和生物质之间的摩擦对温度分布有边际影响,并证明最高和最低温度点与输入变量(超声波功率,颗粒重量和颗粒压力)及其相互作用影响显着相关。所提出的数学模型通过避免不必要的实验提供了新的指导,并提供了对生物质制粒过程中性状特征的系统理解。从当前研究中转移的知识填补了数学建模研究与最佳的超声振动辅助制粒过程之间的文献空白;因此,可以为提高与能源相关的超声制造中的生物质质量提供见识。

著录项

  • 来源
    《Applied Energy 》 |2017年第1期| 511-528| 共18页
  • 作者单位

    Yangzhou Univ, Coll Mech Engn, Yangzhou 225127, Jiangsu, Peoples R China;

    Kansas State Univ, Inst Computat Comparat Med Anat & Physiol, Manhattan, KS 66502 USA;

    Jiangsu Muyang Holding Co Ltd, Yangzhou 225127, Jiangsu, Peoples R China;

    North Carolina Agr & Tech State Univ, Dept Ind & Syst Engn, Greensboro, NC 27411 USA;

    Kansas State Univ, Inst Computat Comparat Med Anat & Physiol, Manhattan, KS 66502 USA|Kansas State Univ, Dept Math, Manhattan, KS 66502 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biomass; Ethanol; Pelleting; Temperature; Ultrasonic vibration; Mathematical model;

    机译:生物质;乙醇;制粒;温度;超声振动;数学模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号