首页> 外文期刊>Applied Energy >Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles
【24h】

Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles

机译:单压力和双压力蒸发有机朗肯循环的参数优化和热力学性能比较

获取原文
获取原文并翻译 | 示例
           

摘要

Dual-pressure evaporation organic Rankine cycle (ORC) involves two evaporation processes with different pressures, and can significantly reduce the exergy loss in the heat absorption process compared with conventional single-pressure evaporation ORCs. However, the applicable heat source temperatures of dual-pressure evaporation ORCs and the effects of the working fluid thermophysical properties on the applicable conditions remain indeterminate. Optimal cycle parameters for various heat source temperatures also need to be studied. Solving these questions is crucial for the application and promotion of dual-pressure evaporation ORCs. This study focuses on a typical dual-pressure evaporation ORC driven by the 100-200 degrees C heat sources without a limit on the outlet temperature. Nine pure organic fluids were selected as working fluids. Evaporation pressures and evaporator outlet temperatures of the single-pressure and dual-pressure evaporation ORCs were optimized, and their optimized system thermodynamic performance was compared. Results show that the applicable heat source temperature range of the dual-pressure evaporation ORC (W-net,W-dual W-net,W-single) generally increases as the working fluid critical temperature increases. The upper limit of the applicable heat source temperatures (T-Hs,T-inTP), working fluid critical temperature and pinch point temperature difference generally conform to a linear relation. For the heat source temperature below T-HS,T-inTp, the maximized net power output of the dual-pressure evaporation ORC is larger than that of the single-pressure evaporation ORC. Furthermore, the increment generally increases as the heat source temperature decreases, and the maximum increments are 21.4-26.7% for nine working fluids. For the heat source temperature above T-HS,T-inTP, the dual-pressure evaporation ORC is unbefitting.
机译:双压力蒸发有机朗肯循环(ORC)涉及两个具有不同压力的蒸发过程,并且与常规的单压力蒸发ORC相比,可以显着减少吸热过程中的本能损失。但是,双压蒸发ORC的适用热源温度以及工作流体热物理性质对适用条件的影响仍然不确定。还需要研究各种热源温度的最佳循环参数。解决这些问题对于双压蒸发ORC的应用和推广至关重要。这项研究的重点是由100-200摄氏度的热源驱动的典型双压力蒸发ORC,不受出口温度的限制。选择了九种纯有机流体作为工作流体。优化了单压和双压蒸发ORC的蒸发压力和蒸发器出口温度,并比较了它们的优化系统热力学性能。结果表明,双压力蒸发ORC的适用热源温度范围(W-net,W-dual> W-net,W-single)通常随着工作流体临界温度的升高而升高。适用的热源温度(T-Hs,T-inTP),工作流体临界温度和夹点温度差的上限通常符合线性关系。对于低于T-HS,T-inTp的热源温度,双压蒸发ORC的最大净功率输出大于单压蒸发ORC的最大净功率输出。此外,增量通常随着热源温度的降低而增加,对于九种工作流体,最大增量为21.4-26.7%。对于热源温度高于T-HS,T-inTP的情况,双压蒸发ORC不合适。

著录项

  • 来源
    《Applied Energy》 |2018年第may1期|409-421|共13页
  • 作者单位

    Tsinghua Univ, Key Lab Thermal Sci & Power Engn MOE, Beijing Key Lab Utilizat & Reduct Technol CO2, Beijing 100084, Peoples R China;

    Tsinghua Univ, Key Lab Thermal Sci & Power Engn MOE, Beijing Key Lab Utilizat & Reduct Technol CO2, Beijing 100084, Peoples R China;

    Tsinghua Univ, Key Lab Thermal Sci & Power Engn MOE, Beijing Key Lab Utilizat & Reduct Technol CO2, Beijing 100084, Peoples R China;

    Tsinghua Univ, Key Lab Thermal Sci & Power Engn MOE, Beijing Key Lab Utilizat & Reduct Technol CO2, Beijing 100084, Peoples R China;

    Tsinghua Univ, Key Lab Thermal Sci & Power Engn MOE, Beijing Key Lab Utilizat & Reduct Technol CO2, Beijing 100084, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Organic Rankine cycle; Dual-pressure evaporation; Waste heat recovery; Heat power conversion; Parametric optimization; Performance comparison;

    机译:有机朗肯循环;双压蒸发;余热回收;热力转换;参数优化;性能比较;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号