首页> 外文期刊>Applied Energy >Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust
【24h】

Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust

机译:在有机朗肯循环(ORC)系统中直接VS间接蒸发:发动机排气废热回收动力学行为的比较

获取原文
获取原文并翻译 | 示例
       

摘要

Organic Rankine Cycle (ORC) is a prominent technology for the recovery of waste heat from internal combustion (IC) engines, in particular exhaust waste heat. An important challenge with IC engines, specially mobile, is the highly dynamic conditions and thus high variability of the waste heat thermal power which can lead to chemical decomposition of the ORC fluid or expander damage due to liquid droplets. The heat from the exhaust can be transferred to the ORC working fluid directly in one heat exchanger unit or indirectly through a heat transfer fluid. Compared to indirect evaporation, direct evaporation poses a higher risk to the integrity of the system due to a lower thermal damping capability. However, direct evaporation, is an attractive option in mobile applications due to its considerable lower footprint and potential of higher thermal efficiencies.In this paper, a methodological comparison of the dynamics of the two evaporation options in ORC is presented. The dynamic behavior of an indirect as well as two different direct evaporation options are simulated in a case study of exhaust waste heat recovery from a 240 kW Diesel Engine. The expected variability of the heat source is broken-down to relevant frequencies and amplitudes of fluctuation based on a standard engine transient cycle. The geometry of the heat exchangers for direct evaporation is chosen based on a methodology to achieve a desired thermal inertia. The results show that a non-conventional direct evaporator designed for high thermal inertia can protect the fluid from fluctuations of up to 20 kW of amplitude and not slower than 0.003 Hz even without any control measure in place. The weight and volume is reduced by 88% and 70% respectively compared to indirect evaporation structure. Such a design can enable direct evaporation by avoiding the requirement for a very fast-acting control system, while still allowing for the advantages of direct evaporation such as reduced footprint and potential for a higher thermal efficiency.
机译:有机朗肯循环(ORC)是一种突出的技术,用于从内燃(IC)发动机,特别是废物废热。使用IC发动机专门移动的重要挑战是高度动态的条件,因此可以导致由于液滴导致兽人流体或膨胀机损坏的化学分解的废热热功率的高可变性。来自排气的热量可以直接在一个热交换器单元中或间接地通过传热流体转移到ORC工作流体。与间接蒸发相比,由于较低的热阻尼能力,直接蒸发构成了系统的完整性的风险较高。然而,直接蒸发是移动应用中的有吸引力的选择,因为它相当较低的占地面积和较高的热效率的潜力。在本文中,介绍了兽人中两种蒸发选项的动态的方法论比较。在240 kW柴油发动机的废物废热回收的情况下模拟间接以及两种不同直接蒸发选项的动态行为。基于标准发动机瞬态循环,热源的预期可变性被分解为相关频率和波动的幅度。基于方法的方法选择用于直接蒸发的热交换器的几何形状,以实现所需的热惯性。结果表明,为高热惯性设计的非传统直接蒸发器可以保护流体免受高达20kW幅度的波动,并且即使没有任何控制措施而不是0.003Hz,也不会比0.003Hz较慢。与间接蒸发结构相比,重量和体积分别降低了88%和70%。这种设计可以通过避免对非常快速的控制系统的要求来实现直接蒸发,同时仍然允许直接蒸发的优点,例如降低占地面积,以获得更高的热效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号