首页> 外文期刊>Applied Energy >Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models
【24h】

Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models

机译:使用优化的极端学习机模型的火花点火单缸发动机的压力预测

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, the cyclic of a spark ignition engine using octane fuel is modeled using extreme learning machine, an emergent technology related to single-hidden layer feedforward neural networks (SLFNs). The experimental engine case study was operated with five different engine speeds from 1000 to 3000 rpm, and crankshaft angle from 360 to 360 without exhaust gas recirculation. The mean effective pressure was used to indicate the cyclic variability for the mean of 100 consecutive cycles. In this study the extreme learning machine (ELM), the regularized extreme learning machine and the outlier robust extreme learning machine were applied to predict the conditions of a combustion parameter used to reflect pressure information for entire cycle in a single-cylinder compression ignition naturally aspirated engine. Prediction by ELM models is normally faster than mathematical models employed to solve a set of differential equations by iterative numerical methods. The essence of ELM is that the hidden layer of SLFNs need not be tuned. Nevertheless, the selection of an appropriate ELM topology is crucial in terms of simplicity, velocity and accuracy. The suitable determination of the number of hidden layer nodes (neurons), type of activation function, and sparse connection structure of weights and biases were obtained using a modified biogeography-based optimization approach (BBO), a population-based metaheuristic algorithm inspired on the mathematical model of organism distribution in biological systems. The experimental dataset were used to train ELM models, and the reliability of these models was assessed and compared for two case studies based on performance criteria related to accuracy, sparsity and complexity using a cross-validation procedure. After training, experimental results show that the pressure can be modeled with reasonable accuracy. The results analysis indicated that the proposed optimized ELM and its variants optimized by BBO approaches have potential for prediction the mean effective pressure showed reasonable consistency with the experimental results.
机译:在本研究中,使用辛烷值燃料的火花点火发动机的循环采用极端学习机器建模,一种与单隐藏的层前馈神经网络(SLFN)相关的紧急技术。实验发动机壳体研究用五种不同的发动机速度从1000至3000 rpm的速度操作,并且在没有废气再循环的情况下从360到360到360的曲轴角。平均有效压力用于表示循环变异为100个连续循环的平均值。在这项研究中,应用了极端的学习机(ELM),正则化的极端学习机和异常值强大的极限学习机器来预测用于在单缸压缩点火中的整个循环中反射压力信息的燃烧参数的条件,其自然吸气引擎。 ELM模型的预测通常比用于通过迭代数值方法求解一组微分方程的数学模型更快。 Elm的本质是,不需要调整SLFN的隐藏层。然而,在简单,速度和准确性方面,选择适当的ELM拓扑结构至关重要。利用修改的生物地科的优化方法(BBO)获得了合适的确定性层节点(神经元),激活函数的类型和重量和偏差的稀疏连接结构的确定。基于群体的群体算法,获得了基于群体的群体生物系统中生物体分布的数学模型。实验数据集用于训练榆树模型,并评估这些模型的可靠性,并将其基于与使用交叉验证程序相关的性能标准的两个案例研究进行比较。在培训之后,实验结果表明,压力可以以合理的准确性建模。结果分析表明,由BBO方法优化的所提出的优化ELM及其变体具有预测的潜力,平均有效压力显示出与实验结果的合理符合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号