首页> 外文期刊>Applied Energy >Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology
【24h】

Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology

机译:基于SDAE-ELM算法和数据预处理技术的大数据驱动锂离子电池建模方法

获取原文
获取原文并翻译 | 示例
           

摘要

As one of the bottleneck technologies of electric vehicles (EVs), the battery hosts complex and hardly observable internal chemical reactions. Therefore, a precise mathematical model is crucial for the battery management system (BMS) to ensure the secure and stable operation of the battery in a multi-variable environment. First, a Cloud-based BMS (C-BMS) is established based on a database containing complete battery status information. Next, a data cleaning method based on machine learning is applied to the big data of batteries. Meanwhile, to improve the model stability under dynamic conditions, an F-divergence-based data distribution quality assessment method and a sampling-based data preprocess method is designed. Then, a lithium-ion battery temperature-dependent model is built based on Stacked Denoising Autoencoders- Extreme Learning Machine (SDAE-ELM) algorithm, and a new training method combined with data preprocessing is also proposed to improve the model accuracy. Finally, to improve reliability, a conjunction working mode between the C-BMS and the BMS in vehicles (V-BMS) is also proposed, providing as an applied case of the model. Using the battery data extracted from electric buses, the effectiveness and accuracy of the model are validated. The error of the estimated battery terminal voltage is within 2%, and the error of the estimated State of Charge (SoC) is within 3%.
机译:作为电动汽车(EV)的瓶颈技术之一,电池具有复杂且难以观察的内部化学反应。因此,精确的数学模型对于电池管理系统(BMS)至关重要,以确保电池在多变量环境中安全稳定地运行。首先,基于包含完整电池状态信息的数据库建立基于云的BMS(C-BMS)。接下来,将基于机器学习的数据清理方法应用于电池的大数据。同时,为提高模型在动态条件下的稳定性,设计了一种基于F散度的数据分布质量评估方法和一种基于采样的数据预处理方法。然后,基于堆叠式降噪自动编码器-极限学习机(SDAE-ELM)算法建立了锂离子电池温度相关模型,并提出了一种新的训练方法与数据预处理相结合的方法,以提高模型的准确性。最后,为了提高可靠性,还提出了C-BMS和车辆BMS之间的联合工作模式(V-BMS),作为模型的应用案例。使用从电动公交车提取的电池数据,验证了模型的有效性和准确性。估计的电池端子电压的误差在2%以内,估计的充电状态(SoC)的误差在3%以内。

著录项

  • 来源
    《Applied Energy》 |2019年第1284期|1259-1273|共15页
  • 作者单位

    Beijing Inst Technol, Natl Engn Lab Elect Vehicles & Collaborat Innovat, Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Natl Engn Lab Elect Vehicles & Collaborat Innovat, Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Natl Engn Lab Elect Vehicles & Collaborat Innovat, Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electric vehicles; Battery energy storage; Temperature-dependent model; Battery management system; Big data; Deep learning;

    机译:电动汽车;电池储能;温度依赖模型;电池管理系统;大数据;深度学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号