首页> 外文期刊>Applied Computational Electromagnetics Society journal >Hardware Accelerated Design of Millimeter Wave Antireflective Surfaces: A Comparison of Field-Programmable Gate Array (FPGA) and Graphics Processing Unit (GPU) Implementations
【24h】

Hardware Accelerated Design of Millimeter Wave Antireflective Surfaces: A Comparison of Field-Programmable Gate Array (FPGA) and Graphics Processing Unit (GPU) Implementations

机译:毫米波抗反射表面的硬件加速设计:现场可编程门阵列(FPGA)和图形处理单元(GPU)实现的比较

获取原文
获取原文并翻译 | 示例
       

摘要

Engineered materials that demonstrate a specific response to electromagnetic energy incident on them in antenna and radio frequency component design applications are in high demand due to both military and commercial needs. The design of such engineered materials typically requires numerically intensive computations to simulate their behavior as they may have electrically small features on a large area or often the overall system performance is required, which means modeling the entire integrated system. Furthermore, to achieve an optimal performance these simulations need to be run many times until a desired solution is achieved, presenting a major hindrance in arriving at a feasible solution in a reasonable amount of time. One example of such applications is the design of antireflective (AR) surfaces at millimeter wave frequencies, which often involves sub-wavelength gratings in an electrically large multilayer structure. This paper investigates the use of field-programmable gate arrays (FPGAs) and graphics processing units (GPUs) as coprocessors to the CPU in order to expedite the computation time. Preliminary results show that the hardware implementation (100 MHz) on Xilinx Virtex4LX200 FPGA is able to outperform a single-thread software implementation on Intel Itanium 2 processor (1.66 GHz) by 20 folds. However, the performance of the FPGA implementation lags behind the single-thread implementation on a modern Xeon (2.26 GHz) by 3.6x. On the other hand, modern GPUs demonstrate an evident advantage over both CPU and FPGA by achieving 20 x speedup than the Xeon processor.
机译:由于军事和商业需求,对在天线和射频组件设计应用中表现出对入射到其上的电磁能产生特定反应的工程材料的需求很高。这种工程材料的设计通常需要进行数值密集的计算以模拟其行为,因为它们在大面积上可能具有较小的电气特征,或者通常需要整体系统性能,这意味着需要对整个集成系统进行建模。此外,为了获得最佳性能,这些仿真需要运行多次,直到获得所需的解决方案为止,这在合理的时间内为实现可行的解决方案提供了主要障碍。这种应用的一个例子是在毫米波频率下设计抗反射(AR)表面,这通常涉及电大的多层结构中的亚波长光栅。本文研究了如何使用现场可编程门阵列(FPGA)和图形处理单元(GPU)作为CPU的协处理器,以加快计算时间。初步结果显示,Xilinx Virtex4LX200 FPGA的硬件实现(100 MHz)可以比Intel Itanium 2处理器(1.66 GHz)的单线程软件实现高20倍。但是,FPGA实现的性能比现代Xeon(2.26 GHz)上的单线程实现落后3.6倍。另一方面,现代GPU通过实现比Xeon处理器快20倍的速度,显示出明显优于CPU和FPGA的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号