...
首页> 外文期刊>Applied and Computational Harmonic Analysis >Intrinsic modeling of stochastic dynamical systems using empirical geometry
【24h】

Intrinsic modeling of stochastic dynamical systems using empirical geometry

机译:基于经验几何的随机动力学系统的内部建模

获取原文
获取原文并翻译 | 示例

摘要

In a broad range of natural and real-world dynamical systems, measured signals are controlled by underlying processes or drivers. As a result, these signals exhibit highly redundant representations, while their temporal evolution can often be compactly described by dynamical processes on a low-dimensional manifold. In this paper, we propose a graph-based method for revealing the low-dimensional manifold and inferring the processes. This method provides intrinsic models for measured signals, which are noise resilient and invariant under different random measurements and instrumental modalities. Such intrinsic models may enable mathematical calibration of complex measurements and build an empirical geometry driven by the observations, which is especially suitable for applications without a priori knowledge of models and solutions. We exploit the temporal dynamics and natural small perturbations of the signals to explore the local tangent spaces of the low-dimensional manifold of empirical probability densities. This information is used to define an intrinsic Riemannian metric, which in turn gives rise to the construction of a graph that represents the desired low-dimensional manifold. Such a construction is equivalent to an inverse problem, which is formulated as a nonlinear differential equation and is solved empirically through eigenvectors of an appropriate Laplace operator. We examine our method on two nonlinear filtering applications: a nonlinear and non-Gaussian tracking problem as well as a non-stationary hidden Markov chain scheme. The experimental results demonstrate the power of our theory by extracting the underlying processes, which were measured through different nonlinear instrumental conditions, in an entirely data-driven nonparametric way. (C) 2014 Elsevier Inc. All rights reserved.
机译:在广泛的自然和现实动力学系统中,所测量的信号由基本过程或驱动程序控制。结果,这些信号表现出高度冗余的表示,而它们的时间演变通常可以通过低维流形上的动力学过程来紧凑地描述。在本文中,我们提出了一种基于图的方法来揭示低维流形并推断过程。这种方法为被测信号提供了固有模型,这些模型在不同的随机测量和仪器模态下具有抗噪能力和不变性。这种内在模型可以实现复杂测量的数学校准,并建立由观测值驱动的经验几何,这特别适合于无需先验模型和解决方案知识的应用。我们利用信号的时间动态和自然小扰动来探索经验概率密度的低维流形的局部切空间。该信息用于定义本征黎曼度量,而内黎曼度量又引起表示所需低维流形的图的构建。这种构造等效于一个反问题,该问题被公式化为非线性微分方程,并通过适当的Laplace算子的特征向量凭经验进行求解。我们在两种非线性滤波应用中研究了我们的方法:非线性和非高斯跟踪问题以及非平稳隐马尔可夫链方案。实验结果通过以完全数据驱动的非参数方式提取通过不同非线性仪器条件测量的基础过程,证明了我们理论的力量。 (C)2014 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号