...
首页> 外文期刊>Applied Acoustics >Wall suction & slip effect of spherical-grooved bionic metasurface for controlling the aerodynamic noise
【24h】

Wall suction & slip effect of spherical-grooved bionic metasurface for controlling the aerodynamic noise

机译:球形沟槽仿仿仿生表面控制空气动力学噪声的壁画和滑动效果

获取原文
获取原文并翻译 | 示例
           

摘要

The wall suction & slip effect of the bionic metasurface with periodic spherical grooves on the vehicle body surface is proposed for aerodynamic noise control, and physical mechanism is investigated by theoretical analysis and simulation. When fluid flows through the grooved vehicle body surface, wall suction effect occurs due to clockwise pressure difference around the interior groove. The trailing vortex region of the vehicle body is reduced, the fluctuating pressure on the wall surface decreases, and the adverse pressure in the boundary layer is relieved. On the other hand, a slip velocity consistent with flow direction is generated at the interface corresponding to grooves, which results in reduced velocity gradient in the boundary layer and decreased thickness of the boundary layer. Ideally, the boundary layer could disappear when the velocity of slippage is increased to that of the flow by adjusting the grooves parameters, such as, the groove depth, pitch, and radius. Overall, the wall suction & slip effect fundamentally prevents generation of the boundary layer and delays its separation. Finally, effective control of aerodynamic noise within 450-1000 Hz on the vehicle body surface is realized by an average drop of 11.97 dB and up to 100% at 500 Hz. This study opens up a possibility for full control of boundary layer and could have effective applications in controlling aerodynamic noise. (C) 2020 Elsevier Ltd. All rights reserved.
机译:提出了用于空气动力学噪声控制的仿生金属表面与车身表面上的周期球形槽的壁吸和滑移效果,并通过理论分析和模拟研究了物理机制。当流体流过沟槽车身表面时,由于内部凹槽周围的顺时针压力差异而发生壁抽吸效果。车身的尾部涡旋区域减小,壁面上的波动压力降低,并且释放边界层中的不利压力。另一方面,在对应于凹槽的界面处产生与流动方向一致的滑动速度,这导致边界层中的速度梯度降低并降低了边界层的厚度。理想地,当通过调节凹槽参数,例如凹槽深度,俯仰和半径,滑动速度增加到流动的速度时,边界层可以消失。总体而言,壁吸气和滑动效果从根本上防止了边界层的产生并延迟了其分离。最后,在车身表面上450-1000 Hz内的空气动力学噪声的有效控制通过平均下降11.97dB,500Hz达100%。本研究开辟了完全控制边界层的可能性,并且可以在控制空气动力学噪声方面具有有效的应用。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Applied Acoustics》 |2021年第1期|107537.1-107537.6|共6页
  • 作者单位

    Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Peoples R China|Xi An Jiao Tong Univ State Key Lab Strength & Vibrat Mech Struct Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Peoples R China|Xi An Jiao Tong Univ State Key Lab Strength & Vibrat Mech Struct Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号