首页> 外文期刊>Antonie van Leeuwenhoek >Ultrastructural and physico-chemical heterogeneities of yeast surfaces revealed by mapping lateral-friction and normal-adhesion forces using an atomic force microscope
【24h】

Ultrastructural and physico-chemical heterogeneities of yeast surfaces revealed by mapping lateral-friction and normal-adhesion forces using an atomic force microscope

机译:通过使用原子力显微镜绘制横向摩擦力和正常粘附力来揭示酵母表面的超微结构和物理化学异质性

获取原文
获取原文并翻译 | 示例
           

摘要

Scanning force microscopy has been used to probe the surface of the emerging pathogenic yeast Candida parapsilosis, in order to get insight into its surface structure and properties at submicrometer scales. AFM friction images eventually show patches with a very strong contrast, showing high lateral interaction with the tip. Adhesion force measurement also reveals a high normal interaction with the tip, and patches show extraordinarily high pull off values. The tip eventually sticks completely at the center of the patches. While an extraordinarily high interaction is measured by the tip at those zones, topographic images show extraordinarily flat topography over those zones, both of which characteristics are consistent with a liquid-like area. High resolution friction images show those zones to be surrounded by microfibrillar structures, concentrically oriented, of a mean width of about 25 nm, structures that become progressively less defined as we move away from the center of the patches. No structure can be appreciated inside the zones of maximum contrast. Also some helical or ribbon-like structure can be resolved from friction images. There is not only an ordered disposition of the microfibrillar structures, but also the adhesion force increases radially in the direction towards the center of the patches. These structures responsible for the high adhesion are thought to be incipient-emerging budding zones. Microfibrillar structures are thought to represent the first steps of chitin biosynthesis and cell wall digestion, with chitin polymers being biosynthesized, associated with other macromolecules of the yeast cell wall. They can be also beta glucan helical structures, made visible in the zone of yeast division due to the action of autolysins. The observed gradient in surface adhesion and elastic properties correlates well with that expected from a biochemical point of view. The higher adhesion force measured could be either due to the different macromolecular nature of the patches, or to a mechanical adhesion effect due to the different plasticity of that zone. This work reveals the importance of taking into account the dynamic nature of the cell wall physico-chemical properties. Processes related to the normal cell-cycle, as division, can strongly alter the surface morphology and physico-chemical properties and cause important heterogeneities that might have a profound impact on the adhesion behavior of a single cell, which could not be detected by more macroscopic methods.
机译:扫描力显微镜已用于探测新兴病原性酵母假丝酵母念珠菌的表面,以便深入了解其表面结构和亚微米级的性质。 AFM摩擦图像最终显示出具有非常强对比度的斑块,显示出与尖端的高度横向相互作用。粘附力的测量还揭示了与尖端的正常相互作用,而贴剂显示出异常高的剥离值。尖端最终完全粘在贴片的中心。尽管尖端在那些区域测量到异常高的交互作用,但地形图图像显示在那些区域上的异常平坦的地形,这两个特征均与类液体区域一致。高分辨率摩擦图像显示,这些区域被同心定向的平均宽度约为25 nm的微原纤结构包围,随着我们从贴片中心移开,这些结构的清晰度逐渐降低。在最大对比度区域内无法看到任何结构。也可以从摩擦图像中解析出一些螺旋形或带状结构。不仅存在微原纤结构的有序布置,而且粘附力在朝向贴剂中心的方向上径向增加。这些负责高粘附力的结构被认为是初生的出芽区。人们认为微原纤结构代表了几丁质生物合成和细胞壁消化的第一步,几丁质聚合物是生物合成的,与酵母细胞壁的其他大分子相关。它们也可以是β-葡聚糖螺旋结构,由于自溶素的作用,在酵母分裂区中可见。从生物化学的角度看,所观察到的表面粘附力和弹性特性的梯度与预期的很好地相关。所测得的较高的粘附力可能是由于贴剂的大分子性质不同,或者是由于该区域的可塑性不同而产生的机械粘附作用。这项工作揭示了考虑细胞壁物理化学性质的动态性质的重要性。与正常细胞周期有关的过程(作为分裂)可以极大地改变表面形态和理化性质,并导致重要的异质性,从而可能对单个细胞的黏附行为产生深远的影响,而这在宏观上是无法发现的。方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号