首页> 外文期刊>Antennas and Propagation Magazine, IEEE >Measurement of Complex Permittivity using Artificial Neural Networks
【24h】

Measurement of Complex Permittivity using Artificial Neural Networks

机译:使用人工神经网络测量复介电常数

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a neural-network-based methodology is presented to measure the complex permittivity of materials using monopole probes. A multilayered artificial neural network, using the Levenberg Marquardt back-propagation algorithm, is used to back solve the complex permittivity of the medium. The proposed network can be trained using an analytical model, numerical model, or measurement data spread over the complete range of parameters of interest. The input training data for the nonlinear inverse problem of reconstructing the complex permittivity comprises the complex reflection coefficient of the monopole probe. For the results presented in this paper, the network was trained using the analytical model for impedances of monopole antennas in a half space by Gooch et al. [1]. In addition to computational efficiency, the proposed approach gave 990/0 accurate results in the frequency range of 2.5–5 GHz, with the values of permittivity varying across a range of 3–10 for the real part, and 0–0.5 for the imaginary part. The accuracy and the effective range of real and imaginary components of the complex permittivity that can be reconstructed using this approach depend upon the accuracy and robustness of the model/system used to generate the training data. The analytical model used in this paper had a limited range for the values of loss tangent that it can model accurately. However, the performance of the back-solving algorithm remains independent from any specific model, and the scheme can be successfully applied using any reliable analytical or numerical model, or reflection-coefficient training data generated through a series of measurements. The methodology is likely to be employed for experimental measurements of complex permittivity of dissipative media.
机译:在本文中,提出了一种基于神经网络的方法来使用单极探针测量材料的复介电常数。使用Levenberg Marquardt反向传播算法的多层人工神经网络用于反向求解介质的介电常数。可以使用分析模型,数值模型或分布在整个目标参数范围内的测量数据来训练所建议的网络。用于重构复介电常数的非线性反问题的输入训练数据包括单极探头的复反射系数。对于本文提出的结果,使用Gooch等人的半空间单极天线阻抗分析模型对网络进行了训练。 [1]。除了计算效率外,所提出的方法还可以在2.5-5 GHz的频率范围内提供990/0准确的结果,介电常数的值在实部范围为3-10,虚部为0-0.5。部分。可以使用此方法重建的复介电常数的实部和虚部的准确性和有效范围取决于用于生成训练数据的模型/系统的准确性和鲁棒性。本文中使用的分析模型对于可以精确建模的损耗正切值范围有限。但是,后向求解算法的性能与任何特定模型无关,并且可以使用任何可靠的分析或数值模型或通过一系列测量生成的反射系数训练数据来成功应用该方案。该方法可能用于耗散介质复介电常数的实验测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号