首页> 外文期刊>Annals of nuclear energy >Hydrogen risk for advanced PWR under typical severe accidents induced by DVI line break
【24h】

Hydrogen risk for advanced PWR under typical severe accidents induced by DVI line break

机译:DVI断线引发的典型严重事故下高级压水堆的氢气风险

获取原文
获取原文并翻译 | 示例
           

摘要

Advanced passive pressurized water reactor (APWR) relies on In-Vessel Retention (IVR) of molten core debris under severe accidents, which makes hydrogen generation and distribution different with other PWRs. Hydrogen generation and hydrogen risk for APWR is studied with the integrated severe accident plant model, including Reactor Coolant System (RCS), engineered safety features (ESFs), simplified secondary side, containment and passive containment cooling system (PCCS). Initial events of DVI line break with passive core cooling system (PXS) compartment not flooded (named Case 1), DVI line break with PXS compartment flooded through broken DVI line (named Case 2), and DVI line break with IRWST direct injection available based on Case 1 (named Case 3) are selected to study hydrogen generation in pressure vessel, distributions in containment, and hydrogen risk controlled with igniters. Results show that hydrogen generated in pressure vessel is 257 kg, 461 kg and 499 kg for Case 1 to Case 3 due to different thermal hydraulic characteristics. During maintaining the water level in the pressure vessel with the safety measures, zirconium-steam reaction is violent and the duration of hydrogen generation is longer than the other two cases due to the availability of plenty of steam, resulting in an amount of hydrogen generation, and hydrogen distribution in upper containment is nearly 10%. Case 3 is screened to analyze the effectiveness of hydrogen control system consisting of igniters, showing that the hydrogen control system can mitigate hydrogen risk when igniters are available at the SAMG inlet condition. (C) 2016 Elsevier Ltd. All rights reserved.
机译:先进的被动式压水堆(APWR)依靠严重事故下熔融堆芯碎屑的容器内滞留(IVR),这使得氢的产生和分布与其他PWR有所不同。 APWR的氢气产生和氢气风险通过严重事故工厂模型进行了综合研究,包括反应堆冷却剂系统(RCS),工程安全功能(ESF),简化的二次侧,安全壳和被动安全壳冷却系统(PCCS)。被动式冷却系统(PXS)隔室未淹没的DVI线路中断的初次事件(案例1),通过折断的DVI线淹没的PXS隔室的DVI线路中断(事件2),以及基于IRWST直接注入的DVI断线事件选择案例1(命名为案例3)的方法来研究压力容器中的氢气产生,安全壳中的分布以及由点火器控制的氢气风险。结果表明,由于热工特性不同,案例1至案例3在压力容器中产生的氢气分别为257 kg,461 kg和499 kg。在通过安全措施保持压力容器中的水位的过程中,锆蒸汽反应剧烈,并且由于可获得大量蒸汽而使氢气产生的持续时间长于其他两种情况,从而导致大量氢气产生,上部安全壳中的氢分布接近10%。案例3被筛选以分析由点火器组成的氢气控制系统的有效性,表明当在SAMG入口条件下有点火器时,氢气控制系统可以减轻氢气风险。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号