...
首页> 外文期刊>Annals of nuclear energy >Computing eigenvalue sensitivity coefficients to nuclear data by adjoint superhistory method and adjoint Wielandt method implemented in RMC code
【24h】

Computing eigenvalue sensitivity coefficients to nuclear data by adjoint superhistory method and adjoint Wielandt method implemented in RMC code

机译:用RMC代码中实现的伴随超历史方法和伴随Wielandt方法计算核数据的特征值敏感性系数

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the previous work, the continuous-energy Reactor Monte Carlo code RMC has been developed with the capability of calculating eigenvalue sensitivity coefficients with regard to nuclear data based on the iterated fission probability (IFP) method. By applying the physical meaning of adjoint flux, the IFP method computes adjoint-weighted reaction rates directly in the forward transport calculations without any discretization in space, energy and angle. The IFP method is accurate theoretically, however, it may produce poor sensitivity coefficients in practice since its memory requirements are proportional to the number of particle histories in each Monte Carlo cycle and the huge memory requirement further restricts the number of particles due to the limitation of the computer memory capability. To overcome this drawback of the IFP method, the adjoint Wielandt method and the adjoint superhistory method are investigated. Both methods allow computing sensitivity coefficients within a single particle history and thus provide the possibility of reducing memory consumption. Furthermore, they preserve the merits of the IFP method such as no need for any discretization. The accuracy as well as the computational performance of the adjoint Wielandt method and the adjoint superhistory method are compared with the IFP method through several cases such as a multi-group infinite-medium problem, an assembly-level problem and a full-core PWR problem. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在先前的工作中,已经开发了连续能量反应堆蒙特卡罗代码RMC,它具有基于迭代裂变概率(IFP)方法计算核数据的本征值灵敏度系数的能力。通过应用伴生通量的物理含义,IFP方法直接在前向输运计算中计算伴生加权反应速率,而不会在空间,能量和角度上产生任何离散。 IFP方法在理论上是准确的,但是,由于其内存需求与每个蒙特卡洛循环中的粒子历史数量成正比,并且在实际应用中可能会产生较差的灵敏度系数,而巨大的内存需求又由于IFP方法的局限性而受到限制。计算机内存功能。为了克服IFP方法的这个缺点,研究了伴随维兰德方法和伴随超历史方法。两种方法都可以计算单个粒子历史记录内的灵敏度系数,因此可以减少内存消耗。此外,它们保留了IFP方法的优点,例如不需要任何离散化。通过多组无限介质问题,装配级问题和全核PWR问题等几种情况,将伴随Wielandt方法和伴随超历史方法的准确性以及计算性能与IFP方法进行了比较。 。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号