首页> 外文期刊>Analytical and Bioanalytical Chemistry >Biomimetic membranes for sensor and separation applications
【24h】

Biomimetic membranes for sensor and separation applications

机译:用于传感器和分离应用的仿生膜

获取原文
获取原文并翻译 | 示例
       

摘要

Biological membranes constitute the set of membranes defining boundaries and organelles in living cells—the structural and functional building blocks of all known living organisms. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized and highly efficient transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create membrane-based sensor and/or separation devices? In the development of biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. Generally, each class of transport proteins conducts specific molecular species in and out of the cell while preventing the passage of others, a property critical for the overall conservation of the cells internal pH and salt concentration. Both ion and water channels are highly efficient membrane pore proteins capable of transporting solutes at very high rates, up to 109 molecules per second. Carrier proteins generally have a lower turnover but are capable of transport against gradients. For both classes of proteins, their unique flux-properties make them interesting as candidates in biomimetic sensor/separation devices. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to water, electrolytes, and non-electrolytes. The feasibility of a biomimetic device thus depends on the relative transport contribution from both protein and biomimetic support matrix. Also the stability of the incorporated protein must be addressed and the protein-biomimetic matrix must be encapsulated in order to protect it and make it sufficiently stable in a final application. Here I will review and discuss these challenges and how they are met in some current developments of biomimetic sensor/separation devices.
机译:生物膜构成了一组膜,这些膜定义了活细胞(所有已知活生物的结构和功能组成部分)中的边界和细胞器。细胞的完整性取决于其将内部与外部分离的能力,但同时又允许物质大量进出细胞。大自然通过开发脂质双层形式的膜(其中掺入了专门的高效转运蛋白)来优雅地应对了这一挑战。这就提出了一个问题:是否有可能模仿生物膜并创建基于膜的传感器和/或分离装置?在仿生传感器/分离技术的发展中,通道(离子通道和水通道)和载体(转运蛋白)都很重要。通常,每类转运蛋白都会在细胞内外传导特定的分子种类,同时阻止其他分子的通过,这是对整体保存细胞内部pH和盐浓度至关重要的特性。离子通道和水通道都是高效的膜孔蛋白,能够以非常高的速率(每秒高达109 分子)运输溶质。载体蛋白通常具有较低的周转率,但能够逆梯度转运。对于这两类蛋白质,它们独特的通量特性使它们成为仿生传感器/分离装置中的候选者很有意思。理想的传感器/分离装置要求支撑的仿生基质实际上对除所讨论的溶质以外的任何物质均不可渗透。然而,实际上,仿生载体基质通常具有对水,电解质和非电解质的有限渗透性。因此,仿生装置的可行性取决于蛋白质和仿生载体基质的相对转运贡献。同样,必须解决掺入蛋白质的稳定性,并且必须封装蛋白质仿生基质以保护其并使其在最终应用中足够稳定。在这里,我将回顾和讨论这些挑战以及在仿生传感器/分离设备的当前最新发展中如何应对这些挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号