首页> 外文期刊>American Journal of Neuroradiology >Reduction of the Radiation Dose for Multidetector Row CT Angiography of Cerebral Aneurysms Using an Edge-Preserving Adaptive Filter: A Vascular Phantom Study
【24h】

Reduction of the Radiation Dose for Multidetector Row CT Angiography of Cerebral Aneurysms Using an Edge-Preserving Adaptive Filter: A Vascular Phantom Study

机译:使用保留边缘的自适应滤镜减少多发性脑动脉瘤行CT血管造影的放射剂量:血管幻影研究

获取原文
获取原文并翻译 | 示例
           

摘要

SUMMARY: To determine how much the radiation dose can be reduced in multidetector row CTA using a QDS, we performed CTA at various exposure settings using a vascular phantom simulating various aneurysms with superimposed bone skull structures, and postprocessed the image data with QDS. Our results demonstrated that the radiation dose of CTA can be reduced by at least 25% and the image quality for visualizing aneurysms can be preserved by applying the QDS. Abbreviations: CNR, contrast-to-noise ratio • CTA, CT angiography • CTDIw, weighted CT dose index • MTF, modulation transfer function • Q04, mild QDS • Q06, heavy sharpening QDS • Q08, heavy smoothing QDS • QDS, quantum denoising system • ROI, region of interest • W, weight of blending the smoothed image and the sharpened image Although CTA is an efficient noninvasive imaging method for the evaluation of intracranial aneurysms, there is a trend toward using an increased radiation dose with multidetector row CT in comparison with the dose used for single-detector row CT. Many investigators recommend low-tube-voltage scanning with properly adjusted tube current for reducing the radiation dose during cerebral CT because a photoelectric effect in x-ray attenuation increases at lower tube voltages.1 On the other hand, reducing the radiation dose causes an increase in the image noise content. Currently, several previous studies have reported that the edge-preserving adaptive filter decreases qualitative and quantitative noise in low-dose CT images.2 However, the effect of this filter on the lesion conspicuity of cerebral CTA has not been investigated. Recently, a new edge-preserving adaptive filter known as the QDS (Toshiba Medical Systems, Tokyo, Japan) has been developed, which can selectively eliminate the noise without affecting the resolution in low-dose scanning. The purpose of this phantom study was to assess how much the radiation dose in CTA for cerebral aneurysms can be reduced by using the QDS. Technique Phantom Design An anthropomorphic vascular phantom made of silicone rubber with superimposed bone skull structures was designed to simulate bilateral intracranial arteries with various intracranial aneurysms. Two types of simulated aneurysms (10 aneurysms with diameters of 3 mm and 6 aneurysms with diameters of 6 mm) were placed on the simulated intracranial artery. Six aneurysms with diameters of 6 mm had an aneurysmal bleb with a diameter of 2 mm. This phantom was filled with 2 kinds of contrast material concentrations (20 and 15 mg I/mL). Image Acquisition CTA was performed with 3 tube voltages in combination with various effective tube-current settings by using a 64-section scanner (Aquilion 64, Toshiba Medical Systems) (Table). For all CTA, we kept constant the following parameters: detector configuration of 64 x 0.5 mm, section thickness of 0.5 mm, reconstruction interval of 0.3 mm, beam pitch of 1.5:1, and table speed of 15 mm per gantry rotation (0.8-second gantry rotation time). CTA is routinely performed at 120 kVp and 200 mAs. Therefore, CTA without QDS at 120 kVp and 200 mAs was defined as the standard CTA. View this table: [in this window] [in a new window] Mean objective measurements of CNR and mean qualitative image scoresa Filter Processing The algorithms used in the QDS are shown in simplified form in Fig 1.3 For edge-detection processing, the edge elements that should be maintained are extracted from the input image by using the edge-detection filter. The extracted edge elements are used to calculate a suitable blending ratio (0 w 1) for the smoothed image and the sharpened image on the basis of the edge-sensitivity curve. Smoothing processing (low-pass filtering) was performed on the input image by using the smoothing filter to attenuate noise elements, while sharpening processing (high-pass filtering) was performed on the input image by using the sharpening filter to enhance the fine structures. The QDS reduces noise by increasing the blending ratio of the smoothed image in areas with low edge intensity, while maintaining the resolution in regions near the edges by increasing the blending ratio of the sharpened image in areas with high edge intensity. The edge-sensitivity curve was used to adjust the sensitivity for edges (the degree to which the edges are maintained) when blending the smoothed image and the sharpened image. Each type of filter processing was in 3D. View larger version (14K): [in this window] [in a new window] Fig 1. Flow chart depicts the basic processing steps of QDS used in the present study. According to the coding of the manufacturer, the filters were classified as Q04, Q06, and Q08. The Q06 and Q08 are more aggressive than the Q04 in terms of the level of both smoothing and sharpening processing. The Q06 and Q08 use the different blending ratios of the smoothed and sharpened image. In comparison with Q06, the Q08 uses a higher ratio of the smoothed image and a lower ratio of the sharpened image. CTA was postprocessed with these 3 types of QDSs. Figures 2 and 3 show the MTF and Wiener noise power spectra. There was no meaningful difference in the MTF among the 4 subsets of CT images (Fig 2). The Wiener noise power spectra suggested that Q08 was the most effective in reducing image noise at all spatial frequencies, especially at lower spatial frequencies (Fig 3). View larger version (14K): [in this window] [in a new window] Fig 2. MTF with a line-wire phantom for the original image and 3 QDS-processed images. View larger version (16K): [in this window] [in a new window] Fig 3. Wiener spectra with a line-wire phantom for the original image and 3 QDS-processed images. Image Analysis The original image and Q08-processed CTA were evaluated. For calculation of the CNR of the aneurysms with respect to the backgrounds, the mean CT number (attenuation) and SD (image noise) of 6 different aneurysms with a diameter of 6 mm in the vascular phantom were measured by placing a circular ROI in the center of the aneurysms on raw data images. The ROI area was kept to 18 mm2. Because it is impossible to set the 18-mm2 ROI on the 3-mm aneurysms, we evaluated only the 6-mm aneurysms. In addition, the CT numbers of the background (silicone rubber) were measured by using the same ROI cursor. The CNR was calculated as follows: (ROIa – ROIb) / SDb, where ROIa and ROIb are the CT numbers of the artery ROI and background ROI, and SDb (background noise) is the SD of the CT numbers of the background. Two neuroradiologists evaluated the image quality of the CTA by consensus according to the depiction of 6 simulated aneurysms with a diameter of 3 mm and 6 blebs by using a 5-point score: 5 = excellent (an aneurysm or aneurysmal bleb was depicted with same quality, which was close to that at the schematic drawing), 4 = more than adequate (an aneurysm or aneurysmal bleb was clearly depicted, but image quality was somewhat reduced in comparison with that at the schematic drawing), 3 = adequate (depiction of the aneurysm or aneurysmal bleb was still sufficient), 2 = insufficient visualization, 1 = not visible. Results Among the 6 combinations of tube voltages and effective tube currents with lower CTDIw than the standard CTA (CTDIw = 48.0 mGy), the CTA with Q08 at 100 kVp and 250 mAs (CTDIw = 39.8 mGy) and the CTA with Q08 at 120 kVp and 150 mAs (CTDIw = 36.0 mGy) showed significantly better results for both CNR and mean qualitative image score at both concentrations of contrast material in comparison with the standard CTA without QDS (Fig 4), except for the qualitative imaging score with Q08 at 120 kVp and 150 mAs at 15 mg I/mL (Table). View larger version (112K): [in this window] [in a new window] Fig 4. CTA without QDS with 120 kVp and 200 mAs (A) and Q08-processed CTA with 120 kVp and 150 mAs (B) from the superior view. For depiction of aneurysmal blebs on CTA at a concentration of 20 mg I/mL, the Q08-processed CTA at 120 kVp and 150 mAs (arrows) is superior to the CTA without QDS at 120 kVp and 200 mAs. Discussion The current quantitative analysis with Wiener noise power spectra demonstrated that the QDS successfully reduced image noise on CT images, and the MTF of the filtered images was not substantially altered from that of the original image. These results indicate that the resolution of structured objects was preserved while noise reduction in nonstructured regions was achieved. The primary aim of this study was to determine how the radiation dose can be reduced by the use of QDS without compromising the image quality of the CTA. Kalra et al2 evaluated the adaptive filter designed to improve the quality of abdominal CT images obtained at a reduced tube current. Our pooled data at 120 kV from the contrast material concentration of 20 mg I/mL were analyzed and showed that the CTAs at 150 mAs postprocessed with Q08 were significantly superior to the standard CTA at 200 mAs with regard to the CNR and qualitative image score. On the basis of our analysis at 120 kV, we concluded that the scanning postprocessed with Q08 permits a reduction of the radiation dose of at least 25% in comparison with the original images (CTDIw: 36.0 mGy at 150 mAs versus 48.0 mGy at 200 mAs). There are some limitations in this study. In the 5-point analysis for the depiction of aneurysms, we used only the 3-mm aneurysms and blebs, because the 6-mm aneurysms could be detected too easily, which did not make any differences in the depiction among all the image protocols evaluated. In conclusion, this phantom study demonstrated that the QDS reduced image noise without a perceptible loss of the delineation of structures of intracranial lesions and made it possible to reduce the radiation dose by 25% in intracranial CTA, while preserving the image quality or even allowing better image quality for the depiction of intracranial aneurysms and aneurysmal blebs.
机译:摘要:为了确定使用QDS的多探测器行CTA可以减少多少辐射剂量,我们使用了模拟重叠的各种动脉瘤的血管模型在各种曝光设置下进行了CTA。 骨头骨结构,并用 QDS对图像数据进行后处理。我们的结果表明,通过应用QDS,可以将CTA 的辐射剂量减少至少25%,并且可以保留可视化 动脉瘤的图像质量。 / sup>缩写:CNR,对比度-噪声比•CTA,CT血管造影•CTDIw,加权CT剂量指数•MTF,调制传递函数•Q04,轻度QDS•Q06,重度锐化QDS•Q08,重度平滑QDS•QDS ,量子降噪系统•ROI,感兴趣区域•W,融合平滑图像和锐化图像的权重尽管CTA是一种有效的非侵入性成像方法,用于 评估颅内动脉瘤,但仍有趋势 与单探测器行CT相比,多探测器行CT 使用增加的辐射剂量。 许多研究人员建议使用低管电压 适当调整的管电流进行扫描,以减少脑部CT期间的辐射剂量 在较低的管电压下,x射线衰减中的光电效应 会增加。 1 另一方面,减小 的辐射剂量会导致辐射剂量的增加。图像噪声含量。 当前,一些先前的研究报告说,边缘保留的 自适应滤波器降低了低剂量CT图像中的定性和定量噪声 。 2 但是,尚未研究此过滤器对脑CTA病变显着性的影响。 最近,一种新的保留边缘的自适应方法已经开发出称为 QDS(东芝医疗系统公司,日本东京)的滤波器, 可以有选择地消除噪声而不会影响 的分辨率。低剂量扫描。这项幻影 研究的目的是评估使用QDS可以减少脑部CTA中CTA的放射剂量。 技术设计设计一种由硅橡胶 制成的拟人化血管幻影,具有重叠的颅骨结构,以模拟具有各种颅内动脉瘤的 双侧颅内动脉。 两种类型将模拟动脉瘤(直径 的10个动脉瘤,直径6 mm的6个动脉瘤)放置在模拟颅内动脉上。直径 为6毫米的六个动脉瘤有一个直径为2毫米的动脉瘤小泡。在此 幻像中填充了2种浓度的对比材料(sup> (20和15 mg I / mL)。 用3管进行图像采集CTA通过使用64截面扫描仪 (东芝医疗系统公司的Aquilion 64)将电压与各种 有效的管电流设置结合使用(表)。对于所有CTA, 我们将以下参数保持不变:检测器配置 为64 x 0.5 mm,截面厚度为0.5 mm,重建 间隔为0.3 mm,梁间距为1.5:1,工作台速度为 每机架旋转15毫米(机架旋转时间为0.8秒)。 CTA通常在120 kVp和200 kV下执行毫安因此,将在120 kVp和200 mAs下没有QDS的 CTA定义为标准 CTA。 查看此表:[在此窗口中] [在一个新窗口] CNR的平均客观测量值和平均定性图像得分 a 过滤处理QDS中使用的算法以简化形式 表示在图1中。 3 对于边缘检测处理,应使用边缘检测过滤器从输入图像 中提取应保留的边缘元素 。提取的边缘元素 用于基于 平滑图像和锐化图像的合适混合比(0 w 1) >边缘灵敏度曲线。通过使用平滑滤波器 衰减噪声元素,同时对输入图像执行平滑处理(低通滤波) ,而锐化处理(高通 过滤器对输入图像进行增强),以增强精细结构。 QDS通过增加边缘强度较低的区域 中的平滑图像的混合比率来降低噪声 ,同时通过增加边缘强度高的区域中 锐化图像的混合比例,在边缘附近的 区域中保持分辨率。边缘敏感度 曲线用于在混合平滑的 图像和后,调整边缘的敏感度(边缘保持的程度 )。锐化的图像。每种类型的过滤器处理 都是3D模式。 查看大图(14K):[在此窗口中] [在新窗口中]图1.流程图描述了基本处理本研究中使用的QDS步骤。根据制造商的编码, 过滤器分为Q04,Q06和Q08。就平滑和锐化 的处理水平而言,Q06和Q08比Q04更具侵略性。 Q06和Q08使用平滑和锐化图像的不同混合比率 。与Q06相比, Q08使用更高比例的平滑图像和更低的 比率。使用这 这3种类型的QDS对CTA进行了后处理。图2和3显示了MTF和Wiener噪声 功率谱。在CT图像的4个子集中,MTF 没有有意义的差异(图2)。维纳噪声功率 光谱表明,Q08在降低所有空间频率的图像噪声方面最为有效,尤其是在较低的 空间频率处(图3)。 )。 查看大图(14K):[在此窗口中] [在新窗口中]图2. MTF带有用于原始图像和3个QDS处理图像的线状幻像。查看大图(16K):[在此窗口中] [在新窗口中]图3.带有带有线-体模的原始图像和3个QDS处理图像的维纳光谱。图像分析评价了原始图像和Q08处理的CTA。对于 背景的动脉瘤CNR的 计算,平均CT数(衰减)和SD(图像 噪声)为6通过在原始数据图像的 动脉瘤中心放置圆形ROI,测量 血管模型中直径为6 mm的不同动脉瘤。 ROI区域 保持为18 mm 2 。因为无法在3毫米动脉瘤上设置18毫米 2 ROI,所以我们仅评估了6毫米动脉瘤。 In另外,使用相同的ROI光标测量背景(硅橡胶) 的CT数。 CNR的计算方法如下:(ROIa – ROIb)/ SDb,其中ROIa和ROIb为 动脉ROI和背景ROI的CT数,以及SDb (背景噪声)是背景CT编号的SD。 两名神经放射科医生根据对6的描述,通过共识评估了CTA 的图像质量模拟的动脉瘤 ,直径为3 mm,通过使用5分得分获得6个气泡: 5 =极好(动脉瘤或动脉瘤性气泡用 相同的质量,接近示意图中的质量), 4 =足够(明显地描述为 的动脉瘤或动脉瘤小泡,但是图像质量有些差与示意图中的 相比减少了,3 =足够(动脉瘤或动脉瘤的描述仍然足够),2 =可视化不足,1 =不可见。 结果在6个co中CTDIw低于标准CTA(CTDIw = 48.0 mGy),Q08的CTA在100 kVp和250 mAs时的管电压和有效tube 的分数(CTDIw = 39.8) mGy)和Q08在120 kVp和150 mAs下的CTA(CTDIw = 36.0 mGy)对于CNR和均值 定性均显示出明显更好的结果与没有QDS的标准CTA相比,两种浓度的造影剂 的图像评分(图4)除外, 的Q08在120 kVp和150 mAs在15 mg I / mL下(表)。 查看较大版本(112K):[在此窗口中] [在新窗口中]图4.没有QDS且120 kVp的CTA从最佳角度看,它具有200 mAs(A)和经Q08处理的120 kVp和150 mAs(B)的CTA。为了描述浓度为20 mg I / mL的CTA上的动脉瘤小泡,在120 kVp和150 mAs(箭头)下进行Q08处理的CTA优于在120 kVp和200 mAs下没有QDS的CTA。讨论当前使用维纳噪声功率谱 进行的定量分析表明,QDS成功降低了 CT图像上的图像噪声,并且过滤后的图像的MTF与原始图像的MTF基本上没有改变。这些结果表明 保留了结构化对象的分辨率,同时实现了非结构化区域中 的降噪。这项研究的主要目的是确定如何通过使用QDS来减少辐射剂量而不会损害CTA的图像质量。 。 Kalra等人 2 评估了自适应滤波器 ,该滤波器设计用于在降低的管电流下提高 获得的腹部CT图像的质量。我们分析了 对比材料浓度为20 mg I / mL在120 kV下的汇总数据, ,结果表明,用Q08后处理的150 mAs的CTA是 关于CNR和定性图像评分,在200 mAs时显着优于标准CTA。根据我们在120 kV下的 分析,我们得出结论,用Q08对后处理的 进行扫描可使辐射剂量至少降低 25与原始图像相比的百分比(CTDIw:在150 mAs时为36.0 mGy 与在200 mAs时为48.0 mGy)。 该研究存在一些局限性。在对动脉瘤的5点分析 中,我们仅使用3毫米动脉瘤 和气泡,因为也可以检测到6毫米动脉瘤 容易,这在所有评估的图像协议中对描述 都没有任何差异。 总之,该幻像研究表明QDS < / sup>降低图像噪声,而不会明显丢失颅内病变结构的轮廓 ,并使 可以将颅内CTA的辐射剂量降低25%,而< sup> 保留图像质量甚至允许更好的图像质量 用于描述颅内动脉瘤和动脉瘤小泡。

著录项

  • 来源
    《American Journal of Neuroradiology》 |2010年第5期|827-829|共3页
  • 作者单位

    From the Department of Radiology (S.K., Y.K., M.O.), University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan;

    From the Department of Radiology (S.K., Y.K., M.O.), University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan;

    From the Department of Radiology (S.K., Y.K., M.O.), University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan;

    Medical Systems Division (K.O., Y.M.), Toshiba Corporation, Tokyo, Japan.;

    Medical Systems Division (K.O., Y.M.), Toshiba Corporation, Tokyo, Japan.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号