...
首页> 外文期刊>AMBIO: A Journal of the Human Environment >Effects of Changes in Climate on Landscape and Regional Processes, and Feedbacks to the Climate System
【24h】

Effects of Changes in Climate on Landscape and Regional Processes, and Feedbacks to the Climate System

机译:气候变化对景观和区域过程的影响以及对气候系统的反馈

获取原文
获取原文并翻译 | 示例
           

摘要

Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net effects of climate change on terrestrial feedbacks to the climate system. This uncertainty applies to magnitude, and even direction of some of the feedbacks.
机译:北极系统中的生物和物理过程在各种时间和空间尺度上运行,以影响大规模的反馈以及与地球系统的相互作用。气候变化对北极和全球气候系统的影响之间存在四种主要的潜在反馈机制:反照率,温室气体排放或生态系统的吸收,甲烷水合物的温室气体排放以及可能影响热盐循环的淡水通量的增​​加。所有这些反馈都在一定程度上受到生态系统分布和特征变化的控制,尤其是受植被区域的大规模移动控制。通过对CO 2 通量进行的一些完整的年度测量结果表明,目前在地理分布上,源区超过汇区。关于CH 4 来源的可用信息很少,这表明景观水平的排放对于北极洲整个温室的温室平衡至关重要。在不断变化的气候中,北极景观的能量和水平衡也是重要的反馈机制。植被密度和空间扩展的增加将导致反照率降低,更多的能量被地面吸收。这种影响可能会超过碳固存增加所带来的负面反馈,即由于苔原对极地沙漠地区和森林造成的苔原地区的位移而导致更高的初级生产力。多年冻土的退化对痕量气体动力学具有复杂的影响。在不连续多年冻土的地区,变暖将导致多年冻土的完全丧失。根据当地的水文条件,这又可能导致环境变湿或变干,进而影响温室气体通量。总体而言,促成反馈的过程之间复杂的相互作用,这些过程中时间和空间的可变性以及数据不足,在估计气候变化对地面对气候系统的反馈的净影响时,产生了很大的不确定性。这种不确定性适用于某些反馈的幅度甚至方向。

著录项

  • 来源
    《AMBIO: A Journal of the Human Environment》 |2004年第7期|p.459-468|共10页
  • 作者单位

    Terry V. Callaghan, Abisko Scientific Research Station, Abisko SE 981-07, Sweden, E-mail: terry.callaghan@ans.kiruna.se;

    Lars Olof Björn, Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-22362, Lund, Sweden, E-mail: lars_olof.bjorn@cob.lu.se;

    Yuri Chernov, A.N. Severtsov Institute of Evolutionary Morphology and Animal Ecology, Russian Academy of Sciences, Staromonetny per. 29, Moscow 109017, Russia, E-mail: lsdc@orc.ru;

    Terry Chapin, Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA, E-mail: terry.chapin@uaf.edu;

    Torben R. Christensen, Department of Physical Geography and Ecosystem Analysis, GeoBiosphere Science Centre, Lund University, Sweden, E-mail: torben.christensen@nateko.lu.se;

    Brian Huntley, School of Biological and Biomedical Sciences, University of Durham, UK, E-mail: brian.huntley@durham.ac.uk;

    Rolf A. Ims, Institute of Biology, University of Tromsö, N-9037 Tromsö, Norway, E-mail: r.a.ims@bio.uio.no;

    Margareta Johansson, Abisko Scientific Research Station, Abisko, SE 981-07, Sweden, E-mail: scantran@ans.kiruna.se;

    Dyanna Jolly Riedlinger, Centre for Maori and Indigenous Planning and Development, P.O. Box 84, Lincoln University, Canterbury, New Zealand, E-mail: dyjolly@pop.ihug.co.nz;

    Sven Jonasson, Physiological Ecology Group, Botanical Institute, University of Copenhagen, Oester Farimagsgade 2D, DK-1353 Copenhagen K, Denmark, E-mail: svenj@bot.ku.dk;

    Nadya Matveyeva, Komarov Botanical Institute, Russian Academy of Sciences, Popova Str. 2, St. Petersburg 197376, Russia, E-mail: nadyam@nm10185.spb.edu;

    Nicolai Panikov, Stevens Technical University, Castle Point on Hudson, Hoboken, NJ 07030, USA, E-mail: npanikov@stevens-tech.edu;

    Walter C. Oechel, Professor of Biology and Director, Global Change Research Group, San Diego State University, San Diego, CA 92182, USA, E-mail: oechel@sunstroke.sdsu.edu;

    Gus Shaver, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543 USA, E-mail: gshaver@mbl.edu;

    Sibyll Schaphoff, Potsdam Institute for Climate Impact Research (PIK), Telegrafenberg P.O. Box 601203, D-14412 Potsdam, Germany;

    Stephen Sitch, Potsdam Institute for Climate Impact Research (PIK), Telegrafenberg P.O. Box 601203, D-14412 Potsdam, Germany, E-mail: sitch@pik-potsdam.de;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号