首页> 外文期刊>Aluminium >Methods to inhibit localised recrystallisation in AA7020 alloy extrusions
【24h】

Methods to inhibit localised recrystallisation in AA7020 alloy extrusions

机译:抑制AA7020合金挤压件中局部再结晶的方法。

获取原文
获取原文并翻译 | 示例
           

摘要

Recrystallisation is a dynamic or static process driven by the stored energy of deformation. During this process, deformed grains are replaced by a new set of undeformed grains that nucleate and grow until the original grains have been ' entirely consumed. Low-strength aluminium alloys such as AA6060 and AA6063 in the AA6xxx series readily undergo recrystallisation and thus fully recrystallised grain structures are often observed in these alloys after hot extrusion. However, medium- and high-strength aluminium ' alloys such as 6082, 6061 and those in the AA2xxx and AA7xxx series often exhibit only partially recrystallised grain structures after hot extrusion. Localised recrystallisation and grain growth result in coarse grains at or near the periphery of the extrudate - a structure that is commonly termed as peripheral coarse grain (PCG) structure. It is a well-known defect occurring to extruded medium- and high-strength aluminium alloys. The defect is detected during product quality control at extrusion plants, meaning losses in material recovery and press time, or during failure analysis at customer's sites, leading to customer dissatisfaction and even liability issues, as the defect may seriously degrade extruded products in mechanical properties. The occurrence of localised recrystallisation is associated with a combination of factors including alloy chemistry, microstructure prior to extrusion, extrusion condition, die geometry and die surface condition in a complex manner. In this communication, the effects of alloying elements and homog-enisation practice on recrystallisation and grain growth after extrusion are discussed with the AA7020 alloy taken as an example of medium-strength aluminium alloys. Methods that may be used to inhibit recrystallisation are put forward.
机译:再结晶是动态或静态过程,受变形能量的存储驱动。在此过程中,变形的晶粒被一组新的未变形的晶粒所替代,它们会成核并生长,直到原始晶粒被“完全消耗”为止。低强度铝合金(例如AA6xxx系列的AA6060和AA6063)容易发生重结晶,因此在热挤压后,这些合金中经常观察到完全重结晶的晶粒结构。但是,中等强度和高强度的铝合金,例如6082、6061以及AA2xxx和AA7xxx系列中的那些,在热挤压后通常只表现出部分重结晶的晶粒结构。局部再结晶和晶粒长大会在挤出物的外围或附近产生粗大晶粒-这种结构通常称为外围粗大晶粒(PCG)结构。这是挤压中高强度铝合金时发生的众所周知的缺陷。缺陷是在挤压工厂的产品质量控制期间检测到的,这意味着材料回收和压制时间的损失,或者在客户现场进行故障分析时,会导致客户不满意,甚至导致责任问题,因为缺陷可能会严重降低挤压产品的机械性能。局部再结晶的发生与多种因素相关,包括合金化学,挤压前的微观结构,挤压条件,模具几何形状和模具表面条件,以复杂的方式发生。在此交流中,以AA7020合金为例,以中强度铝合金为例,讨论了合金元素和均质化实践对挤压后再结晶和晶粒生长的影响。提出了可用于抑制重结晶的方法。

著录项

  • 来源
    《Aluminium》 |2013年第4期|59-64|共6页
  • 作者单位

    Faculty of Mechanical, Maritime and Materials Engineering,Delft University of Technology, The Netherlands;

    Faculty of Mechanical, Maritime and Materials Engineering,Delft University of Technology, The Netherlands;

    School of Metallurgical and Materials Engineering,Iran University of Science and Technology, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号