...
首页> 外文期刊>Algorithmica >Algorithms and Almost Tight Results for -Colorability of Small Diameter Graphs
【24h】

Algorithms and Almost Tight Results for -Colorability of Small Diameter Graphs

机译:小直径图的可着色性的算法和几乎严格的结果

获取原文
获取原文并翻译 | 示例

摘要

The -coloring problem is well known to be NP-complete. It is also well known that it remains NP-complete when the input is restricted to graphs with diameter . Moreover, assuming the Exponential Time Hypothesis (ETH), -coloring cannot be solved in time on graphs with vertices and diameter at most . In spite of extensive studies of the -coloring problem with respect to several basic parameters, the complexity status of this problem on graphs with small diameter, i.e. with diameter at most , or at most , has been an open problem. In this paper we investigate graphs with small diameter. For graphs with diameter at most , we provide the first subexponential algorithm for -coloring, with complexity . Furthermore we extend the notion of an articulation vertex to that of an articulation neighborhood, and we provide a polynomial algorithm for -coloring on graphs with diameter that have at least one articulation neighborhood. For graphs with diameter at most , we establish the complexity of -coloring by proving for every that -coloring is NP-complete on triangle-free graphs of diameter and radius with vertices and minimum degree . Moreover, assuming ETH, we use three different amplification techniques of our hardness results, in order to obtain for every subexponential asymptotic lower bounds for the complexity of -coloring on triangle-free graphs with diameter and minimum degree . Finally, we provide a -coloring algorithm with running time for arbitrary graphs with diameter , where is the number of vertices and (resp. ) is the minimum (resp. maximum) degree of the input graph. To the best of our knowledge, this is the first subexponential algorithm for graphs with and for graphs with and . Due to the above lower bounds of the complexity of -coloring, the running time of this algorithm is asymptotically almost tight when the minimum degree of the input graph is , where , as its time complexity is and the corresponding lower bound states that there is no -time algorithm.
机译:众所周知,着色问题是NP完全的。同样众所周知的是,当输入仅限于带有直径的图形时,它保持NP完全。此外,假设指数时间假设(ETH),最多无法在具有顶点和直径的图上及时解决-着色问题。尽管已就几个基本参数对-着色问题进行了广泛研究,但在小直径,即最大直径或最大直径的图形上,该问题的复杂性状态一直是一个未解决的问题。在本文中,我们研究了小直径的图。对于最大直径的图,我们提供了第一种用于着色的次指数算法,具有复杂性。此外,我们将关节顶点的概念扩展到关节邻域的概念,并提供了一种多项式算法,用于对具有至少一个关节邻域的直径的图进行着色。对于最大直径的图,我们通过证明直径和半径为顶点且度数为最小的无三角形图上的每个着色都是NP完全的,来确定着色的复杂性。此外,假设使用ETH,我们对硬度结果使用三种不同的放大技术,以便获得每个次指数渐近下界的直径和最小度的无三角形图上着色的复杂性。最后,我们为直径为的任意图提供了运行时间的着色算法,其中的顶点数为(resp。)为输入图的最小(resp。最大)度。据我们所知,这是具有和的图的第一个次指数算法。由于上述-coloring复杂度的下界,当输入图的最小度为时,该算法的运行时间渐近趋近于,其中,因为其时间复杂度为,并且相应的下界表示没有时间算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号