首页> 外文会议>International conference on current trends in theory and practice of computer science >Algorithms and Almost Tight Results for 3-Colorability of Small Diameter Graphs
【24h】

Algorithms and Almost Tight Results for 3-Colorability of Small Diameter Graphs

机译:小直径图的三色性的算法和几乎严格的结果

获取原文

摘要

The 3-coloring problem is well known to be NP-complete. It is also well known that it remains NP-complete when the input is restricted to graphs with diameter 4. Moreover, assuming the Exponential Time Hypothesis (ETH), 3-coloring can not be solved in time 2~(o(n)) on graphs with n vertices and diameter at most 4. In spite of the extensive studies of the 3-coloring problem with respect to several basic parameters, the complexity status of this problem on graphs with small diameter, i.e. with diameter at most 2, or at most 3, has been a longstanding and challenging open question. In this paper we investigate graphs with small diameter. For graphs with diameter at most 2, we provide the first subexponential algorithm for 3-coloring, with complexity 2~O(n log n~(1/2)) Furthermore we present a subclass of graphs with diameter 2 that admits a polynomial algorithm for 3-coloring. For graphs with diameter at most 3, we establish the complexity of 3-coloring, even for the case of triangle-free graphs. Namely we prove that for every ε∈[0,1), 3-coloring is NP-complete on triangle-free graphs of diameter 3 and radius 2 with n vertices and minimum degree δ = θ(n~ε). Moreover, assuming ETH, we use three different amplification techniques of our hardness results, in order to obtain for every ε∈[0,1) subexponential asymptotic lower bounds for the complexity of 3-coloring on triangle-free graphs with diameter 3 and minimum degree δ = θ(n~ε). Finally, we provide a 3-coloring algorithm with running time 2~(O(min{δΔ,n/δlogδ})) for arbitrary graphs with diameter 3, where n is the number of vertices and δ (resp. Δ) is the minimum (resp. maximum) degree of the input graph. To the best of our knowledge, this algorithm is the first subexponential algorithm for graphs with δ = ω(1) and for graphs with δ = O(1) and Δ = o(n). Due to the above lower bounds of the complexity of 3-coloring, the running time of this algorithm is asymptotically almost tight when the minimum degree of the input graph is δ = θ(n~ε), where ε [1/2,1).
机译:众所周知,三色问题是NP完全的。众所周知,当输入仅限于直径为4的图形时,它仍然是NP完全的。此外,假设指数时间假设(ETH),则无法在2〜(o(n))的时间内求解3色。在具有n个顶点且直径最大为4的图形上。尽管针对几个基本参数对3色问题进行了广泛研究,但在小直径(即直径最大为2)的图形上,此问题的复杂性状态;或者最多3个问题是一个长期存在且具有挑战性的开放问题。在本文中,我们研究了具有较小直径的图。对于直径最大为2的图,我们提供了第一种用于3色的次指数算法,其复杂度为2〜O(n log n〜(1/2))。此外,我们提出了直径为2的图的子类,该子类允许多项式算法用于3色。对于直径最大为3的图,即使对于无三角形的图,我们也会建立3色的复杂度。也就是说,我们证明对于每个ε∈[0,1),在直径为3且半径为2且无n个顶点且最小度δ=θ(n〜ε)的无三角形图上,三色着色是NP完全的。此外,假设使用ETH,我们使用三种不同的硬度结果放大技术,以便为每个ε∈[0,1)次指数渐近下界求直径3和最小的无三角形图上3色复杂度的下界δ=θ(n〜ε)。最后,对于直径为3的任意图形,我们提供了一种运行时间为2〜(O(min {δΔ,n /δlogδ}))的3色算法,其中n是顶点数,而δ(resp。Δ)是输入图的最小(最大)度。据我们所知,该算法是针对δ=ω(1)的图以及对于δ= O(1)和Δ= o(n)的图的第一个次指数算法。由于上述3色复杂度的下界,当输入图的最小度为δ=θ(n〜ε),其中ε[1 / 2,1时,该算法的运行时间渐近渐近)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号