...
首页> 外文期刊>Aircraft engineering >Stress, strain and displacement analysis of geodetic and conventional fuselage structure for future passenger aircraft
【24h】

Stress, strain and displacement analysis of geodetic and conventional fuselage structure for future passenger aircraft

机译:未来客机大地和常规机身结构的应力,应变和位移分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

PurposeThis paper aims to present the results of calculations that checked how the longerons and frames arrangement affects the stiffness of a conventional structure. The paper focuses only on first stage of research analysis of small displacement. Main goal was to compare different structures under static loads. These results are also compared with the results obtained for a geodetic structure fuselage model of the same dimensions subjected to the same internal and external loads.Design/methodology/approachThe finite element method analysis was carried out for a section of the fuselage with a diameter of 6.3 m and a length equal to 10 m. A conventional and lattice structure known as geodetic was used.FindingsFinite element analyses of the fuselage model with conventional and geodetic structures showed that with comparable stiffness, the weight of the geodetic fuselage is almost 20 per cent lower than that of the conventional one.Research limitations/implicationsThis analysis is limited to small displacements, as the linear version of finite element method was used. Research and articles planned for the future will focus on nonlinear finite element method (FEM) analysis such as buckling, structure stability and limit cycles.Practical implicationsThe increasing maturity of composite structures manufacturing technology offers great opportunities for aircraft designers. The use of carbon fibers with advanced resin systems and application of the geodetic fuselage concept gives the opportunity to obtain advanced structures with excellent mechanical properties and low weight.Originality/valueThis paper presents very efficient method of assessing and comparison of the stiffness and weight of geodetic and conventional fuselage structure. Geodetic fuselage design in combination with advanced composite materials yields an additional fuselage weight reduction of approximately 10 per cent. The additional weight reduction is achieved by reducing the number of rivets needed for joining the elements. A fuselage with a geodetic structure compared to the classic fuselage with the same outer diameter has a larger inner diameter, which gives a larger usable space in the cabin. The approach applied in this paper consisting in analyzing of main parameters of geodetic structure (hoop ribs, helical ribs and angle between the helical ribs) on fuselage stiffness and weight is original.
机译:目的本文旨在介绍检查纵梁和框架布置如何影响常规结构刚度的计算结果。本文仅关注小位移研究分析的第一阶段。主要目标是比较静态载荷下的不同结构。这些结果也与相同尺寸的大地测量结构机身模型在相同的内部和外部载荷作用下获得的结果进行了比较。设计/方法/方法对直径为10mm的机身截面进行了有限元方法分析。 6.3 m,长度等于10 m。使用一种称为大地测量的常规格子结构。发现对具有传统和大地测量结构的机身模型进行有限元分析,结果表明,在具有相当刚度的情况下,大地测量机身的重量比传统机身大了近20%。含义由于使用了有限元方法的线性版本,因此此分析仅限于小位移。未来的研究和计划中的文章将着重于非线性有限元方法(FEM)分析,例如屈曲,结构稳定性和极限环。实际意义复合结构制造技术的日益成熟为飞机设计师提供了巨大的机会。碳纤维与先进的树脂系统结合使用以及大地测量的机身概念使人们有机会获得具有出色机械性能和低重量的先进结构。原始数据/价值本文提出了一种非常有效的评估和比较大地测量刚度和重量的方法和传统的机身结构。大地测量机身设计与先进的复合材料相结合,使机身重量进一步减轻了约10%。通过减少连接元件所需的铆钉数量,可以进一步减轻重量。与具有相同外径的经典机身相比,具有大地测量结构的机身具有更大的内径,从而在机舱中提供了更大的可用空间。本文采用的方法是分析大地测量结构的主要参数(箍筋,螺旋筋和螺旋筋之间的角度)对机身刚度和重量的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号