首页> 外文期刊>AIAA Journal >Scaling Laws and a Method for Identifying Components of Jet Noise
【24h】

Scaling Laws and a Method for Identifying Components of Jet Noise

机译:标度定律和识别喷气噪声成分的方法

获取原文
获取原文并翻译 | 示例
           

摘要

It is well established that there are three principal jet noise components for imperfectly expanded supersonic jets. However, to this date there has been no reliable and practical method for identifying the individual components. First, new scaling laws for the turbulent mixing noise component are developed from a comprehensive experimental database generated by the author. The scaling laws are based on the explicit recognition that a) the variation of the overall sound power level with jet velocity has a weak dependence on jet stagnation temperature ratio; b) the variation of the overall sound pressure level with velocity at every radiation angle is a function of jet stagnation temperature ratio. Therefore, the behavior of the turbulent mixing noise at each radiation angle can be characterized by the two independent parameters: the velocity ratio and the stagnation temperature ratio. These two findings set this study apart from past approaches and form the basis for the methodology developed here. It is demonstrated clearly that there is excellent collapse of the mixing noise spectra over the entire frequency range. Once the normalized or master spectra for the mixing noise are established, it is a trivial matter to subtract these from the total measured spectra to obtain the shock-associated noise. For moderately imperfectly expanded heated supersonic jets, the mixing noise component has the same spectral level as the shock-associated noise, over a wide range of higher frequencies. At the lower radiation angles in the forward quadrant, there is a substantial decrease in the values of the velocity exponents as the stagnation temperature ratio is increased. Proceeding aft, the values start to rise and in the peak sector of noise radiation, the velocity exponent becomes less sensitive to jet stagnation temperature ratio unlike at lower angles, and stays close to the values for the unheated jet.
机译:公认的是,对于不完全膨胀的超音速喷气机,存在三个主要的喷气机噪声成分。但是,迄今为止,还没有可靠且实用的方法来识别各个组件。首先,由作者生成的综合实验数据库为湍流混合噪声分量开发了新的缩放定律。缩放定律基于以下明确的认识:a)总体声功率级随射流速度的变化对射流停滞温度比的依赖性很小; b)在每个辐射角下,总声压级随速度的变化是射流停滞温度比的函数。因此,在每个辐射角处的湍流混合噪声的行为可以通过两个独立的参数来表征:速度比和停滞温度比。这两个发现使这项研究不同于以往的方法,并构成了此处开发方法的基础。清楚地表明,在整个频率范围内,混合噪声频谱都具有极好的崩溃性。一旦建立了混合噪声的归一化或主频谱,从总测量频谱中减去这些频谱以获得震动相关的噪声就变得微不足道了。对于中等程度不完全膨胀的加热超音速射流,在较大范围的较高频率上,混合噪声分量具有与冲击相关噪声相同的频谱水平。在前象限中较低的辐射角处,随着停滞温度比的增加,速度指数的值将大大降低。从后面开始,该值开始上升,并且在噪声辐射的峰值扇区中,速度指数对射流停滞温度比变得不那么敏感,这与在较低角度下不同,并且保持接近未加热射流的值。

著录项

  • 来源
    《AIAA Journal》 |2006年第10期|p.2274-2285|共12页
  • 作者

    K. Viswanathan;

  • 作者单位

    The Boeing Company, Seattle, Washington;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天;航空;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号