首页> 外文期刊>AIAA Journal >Comparison of Gradient-Based and Gradient-Enhanced Response-Surface-Based Optimizers
【24h】

Comparison of Gradient-Based and Gradient-Enhanced Response-Surface-Based Optimizers

机译:基于梯度和基于梯度的响应曲面优化器的比较

获取原文
获取原文并翻译 | 示例
           

摘要

This paper deals with aerodynamic shape optimization using a high-fidelity solver. Because of the computational cost needed to solve the Reynolds-averaged Navier-Stokes equations, the performance of the shape must be improved using very few objective function evaluations, despite the high number of design variables. In our framework, the reference algorithm is a quasi-Newton gradient optimizer. An adjoint method inexpensively computes the sensitivities of the functions, with respect to design variables, to build the gradient of the objective function. As usual, aerodynamic functions show numerous local optima when the shape varies, and a more global optimizer is expected to be beneficial. Consequently, a kriging-based optimizer is set up and described. It uses an original sampling refinement process that adds up to three points per iteration by using a balancing between function minimization and error minimization. To efficiently apply this algorithm to high-dimensional problems, the same sampling process is reused to form a cokriging (gradient-enhanced model) based optimizer. A comparative study is then described on two drag-minimization problems depending on 6 and 45 design variables. This study was conducted using an original set of performance criteria, characterizing the strength and weakness of each optimizer in terms of improvement, cost, exploration, and exploitation.
机译:本文使用高保真求解器进行空气动力学形状优化。由于解决雷诺平均Navier-Stokes方程所需的计算成本,尽管设计变量数量很多,但必须使用很少的目标函数评估来改善形状的性能。在我们的框架中,参考算法是准牛顿梯度优化器。伴随方法廉价地计算了函数相对于设计变量的敏感性,以建立目标函数的梯度。像往常一样,当形状变化时,空气动力学功能会显示出许多局部最优值,因此,人们希望使用更全面的优化器是有益的。因此,建立并描述了基于kriging的优化器。它使用原始的采样优化过程,通过在函数最小化和错误最小化之间取得平衡,每次迭代最多可以增加三个点。为了有效地将此算法应用于高维问题,可重复使用相同的采样过程以形成基于协同克里金法(梯度增强模型)的优化器。然后,根据6和45个设计变量,对两个阻力最小化问题进行了比较研究。这项研究是使用一组原始的性能标准进行的,从改进,成本,探索和开发的角度描述了每个优化器的优缺点。

著录项

  • 来源
    《AIAA Journal》 |2010年第5期|P.981-994|共14页
  • 作者单位

    Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique, 31057 Toulouse, France Postdoctoral Research Fellow, Computational Fluid Dynamics Department, 42 Avenue Gaspard Coriolis;

    rnAirbus Industries, 31060 Toulouse, France Aerodynamics Department, 316 Route de Bayonne;

    rnCentre Europeen de Recherche et Formation Avancees en Calcul Scientifique, 31057 Toulouse, France Computational Fluid Dynamics Department, 42 Avenue Gaspard Coriolis;

    rnUniversite Pierre et Marie Curie, 75252 Paris cedex 05, France Institut Jean Le Rond d'Alembert, 4 place Jussieu-Case 162;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    A: amplitude of the Hicks-Henne bump function; C(x): sampling refinement criterion; Cd: drag coefficient; Cd_f: friction drag coefficient; Cd_i: induced drag coefficient; et al;

    机译:A:Hicks-Henne凹凸函数的幅度;C(x):抽样细化准则;Cd:阻力系数;Cd_f:摩擦阻力系数;Cd_i:诱导阻力系数;等;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号