首页> 外文期刊>AIAA Journal >Suction and Pulsed-Blowing Flow Control Applied to an Axisymmetric Body
【24h】

Suction and Pulsed-Blowing Flow Control Applied to an Axisymmetric Body

机译:吸入和脉冲吹流控制应用于轴对称体

获取原文
获取原文并翻译 | 示例
           

摘要

A flow-control study using steady suction and pulsed blowing in close proximity was conducted on an axisymmetric bluff body at length-based Reynolds numbers between 1.0 and 4.0 × 10~6. The study included a coupled incremental computational-fluid-dynamics and experimental approach. It began with computations of various model setup designs. Subsequently, flow-control experiments and computations were used to optimize steady suction alone. Finally, flow control was provided by a synchronized array of 28 suction and oscillatory blowing actuators, positioned slightly upstream of the baseline separation. Results show suction alone has a limited ability to delay separation and reduce drag on this geometry. Suction located far from the baseline separation is shown to actually increase drag. Addition of pulsed blowing enables separation delay to the trailing edge and drag to be nullified. Increased overall system efficiency, including estimated total actuator power invested, was found at low momentum input for optimally located steady suction and pulsed blowing. This was partially attributed to the particular geometry used because the active flow-control system shows a robust ability to delay separation. Not all measured trends were predicted by computation due to the complex nature of this configuration and the active flow-control system characteristics.
机译:在轴对称钝体上,基于长度的雷诺数在1.0到4.0×10〜6之间,进行了稳定吸力和近距离脉冲吹气的流量控制研究。该研究包括耦合的增量计算流体动力学和实验方法。它始于各种模型设置设计的计算。随后,使用流量控制实验和计算来单独优化稳态吸力。最终,通过28个吸气和振荡吹风执行器的同步阵列提供流量控制,这些执行器位于基线分离的稍稍上游。结果表明,仅吸力具有有限的能力来延迟分离并减小对该几何形状的阻力。距离基线分离很远的吸力实际上会增加阻力。脉冲吹气的增加使分离延迟到后缘,并且阻力被消除。在低动量输入下,可以提高整体系统效率,包括估算的执行器总投资,从而获得最佳的稳定吸力和脉冲吹气。这部分归因于所使用的特定几何形状,因为主动式流量控制系统显示出强大的延迟分离能力。由于这种配置的复杂性和主动的流量控制系统特性,并不是所有的测量趋势都可以通过计算来预测。

著录项

  • 来源
    《AIAA Journal》 |2013年第10期|2432-2446|共15页
  • 作者单位

    NASA Ames Research Center, Moffett Field, California 94035,Aeroflightdynamics Directorate, U.S. Army Aviation Development Directorate - AFDD Aviation & Missile Research, Development & Engineering Center Research, Development and Engineering Command, Mail Stop 215-1;

    Science and Technology Corporation, Moffett Field, California 94035,Aeroflightdynamics Directorate, U.S. Army Aviation Development Directorate - AFDD Aviation & Missile Research, Development & Engineering Center Research, Development and Engineering Command, Mail Stop 215-1;

    Rafael Ltd., 31021 Haifa, Israel,Computational Fluid Dynamics, Aeronautical Systems, Mail Stop 39870;

    Tel Aviv University, 69978 Tel Aviv, Israel,School of Mechanical Engineering, Wolfson M.E. Bldg., Rm. 217, Levanon Street;

    Tel Aviv University, 69978 Tel Aviv, Israel,School of Mechanical Engineering, Wolfson M.E. Bldg., Rm. 217, Levanon Street;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号