首页> 美国卫生研究院文献>Journal of Turbomachinery >Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control—Part I: Non-Axisymmetrical Flow in Centrifugal Compressor
【2h】

Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control—Part I: Non-Axisymmetrical Flow in Centrifugal Compressor

机译:通过不对称流量控制提高高压比涡轮增压器离心压缩机的稳定性-第一部分:离心压缩机中的非轴对称流量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.
机译:这是一个由两部分组成的论文的第一部分,该论文记录了新型不对称流量控制方法的发展,以改善高压比涡轮增压器离心压缩机的稳定性。第一部分着重介绍了蜗壳的非轴对称几何形状引起的离心压缩机中的非轴对称流动,而第二部分则基于非轴对称流动的特性,介绍了一种用于避免失速的非对称流动控制方法的发展。为了理解不对称性,进行了实验测量和相应的数值模拟。通过探针在不同的圆周方向和流向位置测量静压,以获取有关不对称性的见解。实验结果表明,由于悬吊蜗壳的不对称几何形状,整个压缩机存在明显的非轴对称流动模式。扩散器中的静压力场在整个扩散器中沿蜗壳舌的旋转方向约90度变形。这种变形的大小随转速而略有变化。叶轮中静压变形的大小是转速的函数。在分流叶片前缘的静压分布与叶轮出口之间存在明显的相移。数值稳态仿真忽略了上述在实验中发现的不稳定影响,无法预测相移,但是,显然可以获得详细的不对称流场结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号