首页> 外文期刊>Aerospace science and technology >Surrogate-based aerodynamic shape optimization for delaying airfoil dynamic stall using Kriging regression and infill criteria
【24h】

Surrogate-based aerodynamic shape optimization for delaying airfoil dynamic stall using Kriging regression and infill criteria

机译:基于代理的空气动力学形状优化,用于延迟翼型动态失速利用Kriging回归和填写标准

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamic stall phenomenon is characterized by the formation of a leading-edge vortex, which is responsible for adverse aerodynamic forces and moments adversely impacting the structural strength and life of a system. Aerodynamic shape optimization (ASO) provides a cost-effective approach to delay or mitigate the dynamic stall characteristics. Unfortunately, ASO requires multiple evaluations of accurate but time-consuming computational fluid dynamics (CFD) simulations to produce optimum designs rendering the optimization process computationally costly. The current work proposes a surrogate-based optimization (SBO) technique to alleviate the computational burden of ASO to delay and mitigate the deep dynamic stall characteristics of airfoils. In particular, the Kriging regression surrogate model is used for approximating the objective and constraint functions. The airfoil geometry is parametrized using six PARSEC parameters. The objective and constraint functions are evaluated with the unsteady Reynolds-averaged Navier-Stokes equations with a C-grid mesh topology and Menter's shear stress transport turbulence model. The approach is demonstrated on a vertical axis wind turbine airfoil at a Reynolds number of 135,000 and a Mach number of 0.1 undergoing a sinusoidal oscillation with a reduced frequency of 0.05. The surrogate model is constructed with 60 initial samples and further refined with 20 infill samples using expected improvement. The generated surrogate model is validated with the normalized root mean square error based on 20 test data samples. The refined surrogate model is utilized for finding the optimal design using multi-start gradient-based search. The optimal airfoil has a higher thickness, larger leading-edge radius, and an aft camber compared to the baseline. These geometric shape changes delay the dynamic stall angle by over 3. and reduces the severity of the pitching moment coefficient fluctuation. Finally, global sensitivity analysis is conducted on the optimal design using Sobol' indices revealing the most influential shape variables and their interaction effects impacting the airfoil dynamic stall characteristics. (C) 2021 Elsevier Masson SAS. All rights reserved.
机译:动态失速现象的特征在于形成前缘涡流,这负责不利的空气动力和矩对系统的结构强度和寿命产生不利影响。空气动力学形状优化(ASO)提供了一种经济有效的方法来延迟或减轻动态失速特性。遗憾的是,ASO需要多次评估准确但耗时的计算流体动力学(CFD)模拟,以产生计算昂贵的优化过程的最佳设计。目前的工作提出了基于代理的优化(SBO)技术,以减轻ASO的计算负担,延迟和减轻翼型的深动态失速特性。特别地,Kriging回归替代模型用于近似目标和约束函数。使用六个PARSEC参数参数化翼型几何。目标和约束函数是用具有C-Grid网格拓扑和导师剪切应力传输湍流模型的非定常雷诺瓦德平均的Navier-Stokes方程来评估。在雷诺的垂直轴风风力涡轮机翼型上对该方法进行说明,雷诺数为135,000,并且Mach数为0.1的正弦振荡,减小频率为0.05。替代模型由60个初始样品构成,并使用预期的改进进一步用20个填充样品进行了改进。基于20个测试数据样本,使用归一化的根均方误差验证生成的代理模型。通过基于多启动梯度的搜索来利用精细代理模型来查找最佳设计。与基线相比,最佳翼型具有更高的厚度,较大的前缘半径和船尾弯曲。这些几何形状变为延迟动态失速角度超过3.并降低俯仰力矩系数波动的严重性。最后,使用Sobol'索引的最佳设计进行了全局敏感性分析,揭示了最具影响力的形状变量及其相互作用效应影响翼型动态失速特性。 (c)2021 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号