首页> 外文期刊>Aerospace science and technology >Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV
【24h】

Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV

机译:不确定四旋翼无人机的鲁棒自适应反推快速终端滑模控制器

获取原文
获取原文并翻译 | 示例
       

摘要

The problem of controlling the quadrotor orientation and position is considered in the presence of parametric uncertainties and external disturbances. Previous works generally assume that the flight controller parameters are constants. In reality, these parameters depend on the desired trajectory. In this article, a complete mathematical model of a quadrotor UAV is presented based on the Euler-Newton formulation. A robust nonlinear fast control structured for the quadrotor position and attitude trajectory tracking is designed. The position loop generates the actual thrust to control the altitude of the quadrotor and provides the desired pitch and roll angles to the attitude loop, which allow the control of the quadrotor center of gravity in the horizontal plane. The attitude loop generates the rolling, pitching and yawing torques that easily allow the insurance of the quadrotors stability. The outer loop (position loop) uses the robust adaptive backstepping (AB) control to get the desired Euler-angles and the control laws. The inner loop (attitude loop) employs a new controller based on a combination of backstepping technique and fast terminal sliding mode control (AB-ABFTSMC) to command the yaw angle and the tilting angles. In order to estimate the proposed controller parameters of the position and the upper bounds of the uncertainties and disturbances of the attitude, online adaptive rules are proposed. Furthermore, the Lyapunov analysis is used to warranty the stability of the quadrotor UAV system and to ensure the robustness of the controllers against variation. Finally, different simulations were performed in the MATLAB environment to show the efficiency of the suggested controller. The sovereignty of the proposed controller is highlighted by comparing its performance with various approaches such as classical sliding mode control, integral backstepping and second order sliding mode controls. (C) 2019 Elsevier Masson SAS. All rights reserved.
机译:在存在参数不确定性和外部干扰的情况下,考虑了控制四旋翼定向和位置的问题。先前的工作通常假定飞行控制器参数为常数。实际上,这些参数取决于所需的轨迹。在本文中,基于欧拉-牛顿公式,提出了四旋翼无人机的完整数学模型。设计了一种针对四旋翼位置和姿态轨迹跟踪的鲁棒非线性快速控制系统。位置环产生实际推力以控制四旋翼的高度,并为姿态环提供所需的俯仰和侧倾角,从而可以控制四旋翼在水平面中的重心。姿态环产生滚动,俯仰和偏航扭矩,可轻松确保四旋翼飞机的稳定性。外环(位置环)使用鲁棒的自适应反推(AB)控制来获得所需的欧拉角和控制律。内环(姿态环)采用了一种新的控制器,该控制器基于反推技术和快速终端滑模控制(AB-ABFTSMC)的组合来控制偏航角和倾斜角。为了估计所提出的位置的控制器参数以及姿态的不确定性和干扰的上限,提出了在线自适应规则。此外,李雅普诺夫分析用于保证四旋翼无人机系统的稳定性,并确保控制器的稳健性。最后,在MATLAB环境中执行了不同的仿真,以显示建议控制器的效率。通过将其性能与各种方法(例如经典滑模控制,积分反推和二阶滑模控制)进行比较,突出了所提出控制器的主权。 (C)2019 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号