首页> 外文期刊>Aerospace science and technology >Civil turbofan engine exhaust aerodynamics: Impact of fan exit flow characteristics
【24h】

Civil turbofan engine exhaust aerodynamics: Impact of fan exit flow characteristics

机译:民用涡扇发动机排气空气动力学:风扇出口流动特性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

It is envisaged that future civil aero-engines will operate with greater bypass ratios compared to contemporary configurations to lower specific thrust and improve propulsive efficiency. This trend is likely to be accompanied with the implementation of a shorter nacelle and bypass duct for larger engines. However, a short bypass duct may result in an aerodynamic coupling between the exit flow conditions of the fan Outlet Guide Vanes (OGV5) and the exhaust system. Thus, it is imperative that the design of the exhaust is carried out in combination with the fan exit profile. A parabolic definition is used to parameterise and control the circumferentially-averaged radial profiles of stagnation pressure and temperature at the fan OGV exit. The developed formulation is coupled with a parametric exhaust design approach, an automatic computational mesh generator, and a compressible flow solution method. A global optimisation strategy is devised comprising methods for Design of Experiment (DOE), Response Surface Modelling (RSM), and genetic optimisation.A combined Design Space Exploration (DSE) comprising both geometric, as well as fan exit profile variables, is performed to optimise the exhaust geometry in conjunction with the fan exit profile. The developed approach is used to derive optimum exhaust geometries for a tip, mid, and hub-biased fan blade loading distribution. It is shown that the proposed formulation can ameliorate adverse transonic flow characteristics on the core after-body due to a non-uniform bypass inflow. The hub-loaded profile was found to be most penalising in terms of exhaust performance compared to the mid and tip-loaded variants. It is demonstrated that the combined fan exit profile and exhaust geometry optimisation offers significant performance improvement compared to the fixed inflow cases. The predicted performance benefits can reach up to 0.19% in terms of exhaust velocity coefficient, depending on fan loading characteristics. A notable improvement is also noted in terms of bypass nozzle discharge coefficient. This suggests that the combined optimisation can lead to an exhaust design that can satisfy the engine massflow rate demand with a reduced geometric throat area, thus potentially offering further exhaust size and weight benefits. (C) 2019 Rolls-Royce plc. Published by Elsevier Masson SAS.
机译:可以预见,与现代配置相比,未来的民用航空发动机将以更大的旁路比运行,以降低比推力并提高推进效率。这种趋势很可能伴随着较短的机舱和大型发动机旁通管的实施。但是,较短的旁通管道可能会导致风扇出口导向叶片(OGV5)与排气系统的出口流动状况之间发生空气动力学耦合。因此,必须结合风扇出口轮廓进行排气设计。抛物线定义用于对风扇OGV出口处的停滞压力和温度的周向平均径向轮廓进行参数化和控制。开发的公式与参数化排气设计方法,自动计算网格生成器和可压缩流求解方法结合在一起。设计了一种全球优化策略,其中包括用于实验设计(DOE),响应面建模(RSM)和遗传优化的方法。执行组合的设计空间探索(DSE),包括几何以及风扇出口轮廓变量,以实现结合风扇出口轮廓优化排气几何形状。所开发的方法用于为叶尖,中叶和轮毂偏心的风扇叶片载荷分布得出最佳的排气几何形状。结果表明,由于不均匀的旁路流入,所提出的配方可以改善核心后体上不利的跨音速流动特性。与中型和尖头型相比,发现轮毂型材对排气性能的影响最大。结果表明,与固定进风口相比,组合的风扇出口轮廓和排气几何形状优化可显着提高性能。根据风扇负载特性,在排气速度系数方面,预计的性能优势可以达到0.19%。在旁通喷嘴排放系数方面也注意到了显着的改进。这表明组合的优化可以导致排气设计,该排气设计能够以减小的几何喉部面积满足发动机质量流率需求,从而潜在地提供进一步的排气尺寸和重量优势。 (C)2019罗尔斯·罗伊斯公司由Elsevier Masson SAS发布。

著录项

  • 来源
    《Aerospace science and technology》 |2019年第10期|105181.1-105181.13|共13页
  • 作者单位

    Cranfield Univ Prop Engn Ctr Sch Aerosp Transport & Mfg Cranfield MK43 0AL Beds England;

    Rolls Royce PLC Installat Aerodynam Trent Hall 2-2 Derby DE24 8BJ England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号