首页> 外文期刊>Aerospace science and technology >Multidisciplinary design optimization of long-range slender guided rockets considering aeroelasticity and subsidiary loads
【24h】

Multidisciplinary design optimization of long-range slender guided rockets considering aeroelasticity and subsidiary loads

机译:考虑空气弹性和辅助载荷的远程细长型制导火箭弹的多学科设计优化

获取原文
获取原文并翻译 | 示例
           

摘要

Due to the insufficient rigidity feature and long-range requirement, it is crucial to consider the aeroelasticity and subsidiary loads caused by the Earth rotation and fuel consumption when designing long-range slender guided rockets (LRSGRs). As a typical multidisciplinary design optimization (MDO) problem, the design optimization of LRSGRs confronts two critical challenges, i.e., accurate multidisciplinary modeling and efficient global optimization. To address the challenges, a novel MDO framework including MDO problem definition, multidisciplinary modeling, and metamodel-based optimizer is developed for LRSGR design. The LRSGR MDO problem is formulated to minimize the total mass subject to a number of practical engineering constraints such as bending mode frequencies, miss distance, and fall angle. Several disciplinary models including structure, aerodynamics, propulsion, mass, aeroelasticity, guidance control, and trajectory are established. To enhance the analysis accuracy, structural finite element analysis (FEA), three-channel autopilot, and high-fidelity trajectory models are adopted. In the aeroelasticity model, the unsteady aerodynamic loads are calculated by slender body theory and aerodynamic derivative method. The subsidiary loads including subsidiary Coriolis force, centrifugal inertial force, Coriolis force, and subsidiary Coriolis moment are incorporated in the trajectory model of LRSGRs. Since structural finite element, aeroelasticity, and trajectory models are computationally expensive (about 1.8 hours for one trial of system analysis on a well-equipped workstation), an adaptive radial basis function metamodel-based optimizer is integrated in the framework to solve the LRSGR MDO problem with moderate computational cost. The total mass of the studied LRSGR is decreased by 88 kg (i.e., 14% of the total mass) after optimization, which demonstrates the effectiveness and practicability of the proposed MDO framework for LRSGRs. (C) 2019 Elsevier Masson SAS. All rights reserved.
机译:由于缺乏足够的刚度特性和远距离要求,因此在设计远距离细长导引火箭(LRSGR)时,必须考虑由地球自转和燃料消耗引起的气动弹性和辅助载荷。作为典型的多学科设计优化(MDO)问题,LRSGR的设计优化面临两个关键挑战,即准确的多学科建模和有效的全局优化。为了解决这些挑战,针对LRSGR设计开发了一个新颖的MDO框架,包括MDO问题定义,多学科建模和基于元模型的优化器。制定LRSGR MDO问题是为了使总质量最小化,但要考虑许多实际工程约束,例如弯曲模式频率,错位距离和跌落角度。建立了几个学科模型,包括结构,空气动力学,推进,质量,空气弹性,制导控制和弹道。为了提高分析精度,采用了结构有限元分析(FEA),三通道自动驾驶仪和高保真轨迹模型。在气动弹性模型中,通过细长体理论和气动导数法计算了非稳态气动载荷。包括辅助科里奥利力,离心惯性力,科里奥利力和辅助科里奥利力矩在内的辅助载荷被纳入LRSGR的轨迹模型中。由于结构有限元,气动弹性和轨迹模型的计算量很大(在装备精良的工作站上进行的一次系统分析试验,大约需要1.8个小时),因此在框架中集成了基于自适应径向基函数元模型的优化器,以解决LRSGR MDO计算成本适中的问题。优化后,研究的LRSGR的总质量减少了88千克(即总质量的14%),这证明了所提出的LRSGR的MDO框架的有效性和实用性。 (C)2019 Elsevier Masson SAS。版权所有。

著录项

  • 来源
    《Aerospace science and technology》 |2019年第9期|790-805|共16页
  • 作者单位

    Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China|Minist Educ, Key Lab Dynam & Control Flight Vehicle, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China|Minist Educ, Key Lab Dynam & Control Flight Vehicle, Beijing 100081, Peoples R China;

    Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China;

    Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China|Minist Educ, Key Lab Dynam & Control Flight Vehicle, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China|Minist Educ, Key Lab Dynam & Control Flight Vehicle, Beijing 100081, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Long-range slender guided rockets; Multidisciplinary design optimization; Aeroelasticity; Subsidiary loads; Disciplinary modeling; Metamodel-based design optimization;

    机译:远程苗条导轨;多学科设计优化;空气弹性;子公司载荷;纪律建模;基于Metamodel的设计优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号