首页> 外文期刊>Aerospace science and technology >Multidisciplinary design optimization of long-range slender guided rockets considering aeroelasticity and subsidiary loads
【24h】

Multidisciplinary design optimization of long-range slender guided rockets considering aeroelasticity and subsidiary loads

机译:微型纤细导轨考虑空气弹性和辅助载荷的多学科设计优化

获取原文
获取原文并翻译 | 示例
       

摘要

Due to the insufficient rigidity feature and long-range requirement, it is crucial to consider the aeroelasticity and subsidiary loads caused by the Earth rotation and fuel consumption when designing long-range slender guided rockets (LRSGRs). As a typical multidisciplinary design optimization (MDO) problem, the design optimization of LRSGRs confronts two critical challenges, i.e., accurate multidisciplinary modeling and efficient global optimization. To address the challenges, a novel MDO framework including MDO problem definition, multidisciplinary modeling, and metamodel-based optimizer is developed for LRSGR design. The LRSGR MDO problem is formulated to minimize the total mass subject to a number of practical engineering constraints such as bending mode frequencies, miss distance, and fall angle. Several disciplinary models including structure, aerodynamics, propulsion, mass, aeroelasticity, guidance control, and trajectory are established. To enhance the analysis accuracy, structural finite element analysis (FEA), three-channel autopilot, and high-fidelity trajectory models are adopted. In the aeroelasticity model, the unsteady aerodynamic loads are calculated by slender body theory and aerodynamic derivative method. The subsidiary loads including subsidiary Coriolis force, centrifugal inertial force, Coriolis force, and subsidiary Coriolis moment are incorporated in the trajectory model of LRSGRs. Since structural finite element, aeroelasticity, and trajectory models are computationally expensive (about 1.8 hours for one trial of system analysis on a well-equipped workstation), an adaptive radial basis function metamodel-based optimizer is integrated in the framework to solve the LRSGR MDO problem with moderate computational cost. The total mass of the studied LRSGR is decreased by 88 kg (i.e., 14% of the total mass) after optimization, which demonstrates the effectiveness and practicability of the proposed MDO framework for LRSGRs. (C) 2019 Elsevier Masson SAS. All rights reserved.
机译:由于刚性特征不足和远程要求,在设计远程纤细导向火箭(LRSGR)时,考虑由地球旋转和燃料消耗引起的空气弹性和辅助载荷至关重要。作为典型的多学科设计优化(MDO)问题,LRSGRS的设计优化面对两个关键挑战,即准确的多学科建模和高效的全局优化。为了解决挑战,为LRSGR设计开发了一种新的MDO框架,包括MDO问题定义,多学科建模和基于元模型的优化器。制定LRSGR MDO问题以最小化到许多实用工程限制的总质量,例如弯曲模式频率,错过距离和落后角度。建立了几个学科模型,包括结构,空气动力学,推进,质量,空气弹性,指导控制和轨迹。为了提高分析精度,采用结构有限元分析(FEA),三通道自动驾驶仪和高保真轨迹模型。在空气弹性模型中,不稳定的空气动力学载荷由细长的身体理论和空气动力学衍生法计算。包括子公司科里奥利力,离心惯性力,科里奥利力和子公司Coriolis时刻的子公司载荷纳入了LRSGRS的轨迹模型。由于结构有限元,空气弹性和轨迹模型是计算昂贵的(在设备分析的一个试验中约为1.8小时),因此在框架中集成了基于自适应的径向基函数元模型的优化器,以解决LRSGR MDO计算成本中等的问题。优化后,研究的LRSGR的总质量减少了88千克(即总质量的14%),这证明了LRSGR的提议MDO框架的有效性和实用性。 (c)2019年Elsevier Masson SAS。版权所有。

著录项

  • 来源
    《Aerospace science and technology》 |2019年第9期|790-805|共16页
  • 作者单位

    Beijing Inst Technol Sch Aerosp Engn Beijing 100081 Peoples R China|Minist Educ Key Lab Dynam & Control Flight Vehicle Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Aerosp Engn Beijing 100081 Peoples R China|Minist Educ Key Lab Dynam & Control Flight Vehicle Beijing 100081 Peoples R China;

    Tsinghua Univ Sch Aerosp Engn Beijing 100084 Peoples R China;

    Beijing Inst Technol Sch Aerosp Engn Beijing 100081 Peoples R China|Minist Educ Key Lab Dynam & Control Flight Vehicle Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Aerosp Engn Beijing 100081 Peoples R China|Minist Educ Key Lab Dynam & Control Flight Vehicle Beijing 100081 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Long-range slender guided rockets; Multidisciplinary design optimization; Aeroelasticity; Subsidiary loads; Disciplinary modeling; Metamodel-based design optimization;

    机译:远程苗条导轨;多学科设计优化;空气弹性;子公司载荷;纪律建模;基于Metamodel的设计优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号