首页> 外文期刊>Aerospace science and technology >Numerical study of non-reacting flowfields of a swirling trapped vortex ramjet combustor
【24h】

Numerical study of non-reacting flowfields of a swirling trapped vortex ramjet combustor

机译:涡旋式涡流冲压发动机燃烧室非反应流场的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, 3D numerical investigations of a trapped vortex combustor operated in different swirling flow conditions are performed by solving Reynolds-averaged Navier-Stokes equations with Reynolds-stress model. Emphasis is placed on the non-reacting flowfield characteristics and the stability of the locked vortex. Validation is performed first by comparing the present results with experimental data available. It shows that the Reynolds-stress model can provide good predictions for flows with a swirl number up to 0.98. It is also found that the cavity vortex can be trapped well in flows with different swirl numbers. To further study the "locked" vortices, flow disturbances are introduced to the trapped vortex combustor via suddenly increasing swirl number from 0.6 to 0.98. The transient simulation results reveal that the cavity vortex is highly resistant to the flow disturbances and is still well trapped in the cavity, while vortex shedding of the conventional breakdown vortex is observed in the presence of the flow disturbances. Turbulence intensity and kinetic energy are found to be significantly increased by approximately 300%, which indicates that the fuel-air mixing can be dramatically improved. This study shows that the swirling trapped vortex combustor is an alternative promising robust and efficient combustor concept. (C) 2018 Elsevier Masson SAS. All rights reserved.
机译:在这项工作中,通过使用雷诺应力模型求解雷诺平均Navier-Stokes方程,对在不同旋流条件下运行的驻涡燃烧器进行了3D数值研究。重点放在非反应流场特性和锁定涡流的稳定性上。首先通过将当前结果与可用的实验数据进行比较来进行验证。结果表明,雷诺应力模型可以为旋流数高达0.98的流动提供良好的预测。还发现,在具有不同旋流数的流中,腔旋涡可以被良好地捕获。为了进一步研究“锁定”涡流,通过将涡流数从0.6突然增加到0.98,将流动扰动引入到捕获的涡流燃烧器中。瞬态仿真结果表明,空腔涡流对流动扰动具有很高的抵抗力,并且仍然很好地捕获在空腔中,而在存在流动扰动的情况下,可以观察到常规击穿涡流的涡旋脱落。发现湍流强度和动能显着增加了大约300%,这表明燃料-空气混合可以显着改善。这项研究表明,涡旋涡流燃烧器是一种有前途的有力,高效的燃烧器概念。 (C)2018 Elsevier Masson SAS。版权所有。

著录项

  • 来源
    《Aerospace science and technology》 |2018年第3期|81-92|共12页
  • 作者

    Chen Song; Zhao Dan;

  • 作者单位

    KTH Royal Inst Technol, Dept Mech, SE-10044 Stockholm, Sweden;

    Univ Canterbury, Coll Engn, Dept Mech Engn, Private Bag 4800, Christchurch 8140, New Zealand;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号