首页> 外文期刊>Aeronautical journal >Experimental study of unsteadiness in supersonic shock-wave/turbulent boundary-layer interactions with separation
【24h】

Experimental study of unsteadiness in supersonic shock-wave/turbulent boundary-layer interactions with separation

机译:超音速冲击波/湍流边界层相互作用中非定常性的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Shock-wave/turbulent boundary-layer interactions (SWTBLIs) with separation are known to be inherently unsteady but their physical mechanisms are still not totally understood. An experimental investigation has been performed in a supersonic wind tunnel at a freestream flow Mach number of 2·42. The interaction between a shock wave created by a shock generator (α = 3°, α = 9°, α = 13° and α = 15° deflection angles) and a turbulent boundary layer with thickness δ = 5mm has been studied. High-speed Schlieren visualisations have been obtained and used to measure shock wave unsteadiness by means of digital image processing. In the interactions with separation, the reflected shock's unsteadiness has been in the order of 10~2Hz. High-speed wall pressure measurements have also been obtained with fast-response micro-transducers along the interactions. Most of the energy of the incoming turbulent boundary layer is broadband and at high frequencies (>10~4Hz). An addition of low-frequency (<10~4Hz) fluctuation energy is found at separation. Along the interaction region, the shock impingement results in an amplification of fluctuation energy due to the increase in pressure. Under the main recirculation region core there is only an increase in high frequency energy (>10~4Hz). Amplification of lower frequency fluctuation energy (>10~3Hz) is also observed close to the separation and reattachment regions.
机译:已知具有分离的冲击波/湍流边界层相互作用(SWTBLI)本质上是不稳定的,但其物理机理仍未完全了解。在超音速风洞中以自由流马赫数为2·42进行了实验研究。研究了由冲击发生器(α= 3°,α= 9°,α= 13°和α= 15°偏转角)产生的冲击波与厚度δ= 5mm的湍流边界层之间的相互作用。已经获得了高速Schlieren可视化效果,并通过数字图像处理将其用于测量冲击波的不稳定性。在与分离的相互作用中,反射冲击的不稳定度约为10〜2Hz。沿着相互作用,还可以通过快速响应的微传感器获得高速壁压测量结果。进入的湍流边界层的大部分能量是宽带的,且处于高频(> 10〜4Hz)。分离时发现增加了低频(<10〜4Hz)波动能量。沿着相互作用区域,由于压力的增加,冲击冲击导致波动能量增大。在主循环区核心之下,高频能量(> 10〜4Hz)仅增加。在分离区和重新连接区附近也观察到低频波动能量(> 10〜3Hz)的放大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号