首页> 外文期刊>Advancing Microelectronics >New Thin Adhesive for High Density 2.5D Heterogeneous Device Integration with Cu-Cu Hybrid Bonding
【24h】

New Thin Adhesive for High Density 2.5D Heterogeneous Device Integration with Cu-Cu Hybrid Bonding

机译:用于Cu-Cu杂化键合的高密度2.5D异质器件集成的新型薄胶

获取原文
获取原文并翻译 | 示例
           

摘要

Heterogeneous integration of logic, memory, and sensor chips on interposers (2.5D) has attracted a lot of attention as a candidate for More-than-Moore technology. For high performance 2.5D devices, high density integration of chips with narrow spacing and high density interconnections with small pitch bonding electrodes are a key technology. In the current bonding technology, solder micro-bumps (>20 μm in diameter) and non-conductive adhesives have been adopted. There may be some limitations for high density device integration with these technologies because of the protrusion of adhesives around the chips, the thermal sliding at the bonding, and the limit of solder micro-bump minimization. Hybrid bonding with a small Cu electrode (<10 μm in diameter) is a strong candidate for improving advanced device integration technology. Our goal is to develop a new adhesive which gives no protrusion, no thermal sliding, no voids, and high electrical reliability. A spin coating thin adhesive was therefore developed. The new adhesive can be cured at 200 ℃. The cured adhesive film has no tackiness and has an optically flat surface. The adhesive film can be temporarily bondable to SiO_2 at room temperature. After 200 "C baking, a permanent bonding can be achieved, and there is no degradation of bonding strength and no voids even after 400 ℃ of baking. For the applicability to the chip-on-wafer process, the adhesive film/Si wafer can be cut into chips by blade dicing without any delamination and without any apparent particles. After bonding the adhesive/Si chip to a bare Si wafer at room temperature, the thermal sliding amount after the thermal compression process (250 ℃, 10min, 1 MPa) was less than 1 μm (under the detection limit) according to optical microscopic measurements. In addition, there was no protrusion of adhesive around the chip corner from SEM. A first trial result for hybrid bonding is also reported.
机译:逻辑,内存和传感器芯片在插入器(2.5D)上的异构集成吸引了众多关注,成为比摩尔定律更先进的技术。对于高性能2.5D器件,关键技术是具有窄间距的芯片的高密度集成和具有小间距键合电极的高密度互连。在当前的接合技术中,已经采用了焊料微凸块(直径> 20μm)和非导电粘合剂。由于粘合剂在芯片周围的突出,键合处的热滑动以及最小化焊料微凸点的限制,因此与这些技术的高密度设备集成可能存在一些限制。使用小铜电极(直径<10μm)的混合键合是改进先进器件集成技术的强有力的选择。我们的目标是开发一种不产生突出,没有热滑动,没有空隙和高电气可靠性的新型粘合剂。因此开发了旋涂薄粘合剂。新粘合剂可以在200℃固化。固化的粘合剂膜没有粘性并且具有光学平坦的表面。所述粘合剂膜可以在室温下暂时可与SiO 2结合。在200℃烘烤后,可以实现永久性键合,即使在400℃烘烤后,键合强度也不会降低,也不会产生空隙。为了适用于晶圆上芯片工艺,粘合膜/硅片可以通过刀片切割切成薄片,没有分层,没有明显的颗粒,将粘合剂/硅芯片在室温下粘合到裸露的硅晶片上后,进行热压缩处理后的热滑动量(250℃,10min,1 MPa)根据光学显微镜测量,其小于1μm(在检测极限以下),此外,在芯片角附近没有粘合剂从SEM突出,并且还报道了混合粘合的第一试验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号