首页> 外文期刊>Advances in Water Resources >Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: a new method of interpolation and analysis of errors
【24h】

Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: a new method of interpolation and analysis of errors

机译:块状有限差分地下水模型的迭代耦合共享节点三维局部网格细化:一种新的插值和误差分析方法

获取原文
获取原文并翻译 | 示例
           

摘要

This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size—a coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.
机译:本文介绍了将Mehl和Hill的块中心有限差分地下水模型的二维局部网格细化方法扩展到三维的工作[块中心有限差分地下水模型的局部网格细化方法的开发和评估使用共享节点。 Adv Water Resour 2002; 25(5):497-511]。在这种方法中,(父)有限差分网格在(子)子区域内更精细地离散化。网格细化方法依次求解每个网格,并使用指定的通量(父级)和指定的头部(子级)边界条件耦合网格。迭代实现了两个网格的水头和通量之间的收敛。最关心的是如何将头插值到子网格的边界上,以使父网格流的物理特性保持在三个维度上。我们基于与父网格共享的节点之间的子边界上的流方程解,开发了一种新的两步“笼壳”插值方法。使用测试案例进行的错误分析表明,采用笼壳边界头插值的共享节点局部网格细化方法是准确且可靠的,并且所得到的代码用于研究流-含水层相互作用的三维局部网格细化。结果表明(1)父网格和子网格交互以将真实的水头和通量解决方案移动到另一个解决方案,其中两个网格的水头和通量处于平衡状态;(2)局部精炼模型为两个水头和水头提供了解决方案。仅当执行迭代以使水头和通量处于平衡状态时,精炼区域中的通量才比不精炼的模型更准确,并且(3)耦合的精度受到父网格大小的限制-粗大的父网格限制了子网格反馈中液压系统的正确表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号