...
首页> 外文期刊>Advances in Water Resources >Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model
【24h】

Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model

机译:用格-玻尔兹曼方法预测多孔材料中的毛细管滞后,并与实验数据和形态孔网络模型进行比较

获取原文
获取原文并翻译 | 示例
           

摘要

In this work we use two numerical methods which rely only on the geometry and material parameters to predict capillary hysteresis in a porous material. The first numerical method is a morphological pore network (MPN) model, where structural elements are inserted into the imaged pore space to quantify the local capillary forces. Then, based on an invasion-percolation mechanism, the fluid distribution is computed. The second numerical method is a lattice-Boltzmann (LB) approach which solves the coupled Navier-Stokes equations for both fluid phases and describes the dynamics of the fluid/fluid interface. We have developed an optimized version of the model proposed in [Toelke J, Freudiger S, Krafczyk M. An adaptive scheme for LBE multiphase flow simulations on hierarchical grids, Comput. Fluids 2006:35:820-30] for the type of flow problems encountered in this work. A detailed description of the model and an extensive validation of different multiphase test cases have been carried out. We investigated pendular rings in a sphere packing, static and dynamic capillary bundle models and the residual saturation in a sphere packing. A sample of 15 mm in diameter filled with sand particles ranging from 100 to 500 μm was scanned using X-rays from a synchrotron source with a spatial resolution of 11 μm Based on this geometry we computed the primary drainage, the first imbibition and the secondary drainage branch of the hysteresis loop using both approaches. For the LB approach, we investigated the dependence of the hysteresis loop on the speed of the drainage and the imbibition process. Furthermore we carried out a sensitivity analysis by simulating the hysteretic effect in several subcubes of the whole geometry with extremal characteristic properties. The predicted hysteretic water retention curves were compared to the results of laboratory experiments using inverse modeling based on the Richards equation. A good agreement for the hysteresis loop between the LB and MPN model has been obtained. The primary and secondary drainage of the hysteresis loop of the LB and MPN model compare very well, and also the experimental results fit well with a slight offset of 10% in the amplitude. Differences for the first imbibition have been observed, but also large differences between two different experimental runs have been observed.
机译:在这项工作中,我们使用两种数值方法,这些方法仅依赖于几何形状和材料参数来预测多孔材料中的毛细管滞后。第一种数值方法是形态孔隙网络(MPN)模型,其中将结构元素插入到成像的孔隙空间中以量化局部毛细作用力。然后,基于侵入渗流机制,计算流体分布。第二种数值方法是点阵玻尔兹曼(LB)方法,它解决了两个流体相的耦合Navier-Stokes方程,并描述了流体/流体界面的动力学。我们已经开发了[Toelke J,Freudiger S,KrafczykM。]中提出的模型的优化版本。一种针对分层网格上LBE多相流模拟的自适应方案,Comput。 [Fluids 2006:35:820-30],了解这项工作遇到的流动问题类型。已经对该模型进行了详细描述,并对不同的多阶段测试用例进行了广泛的验证。我们研究了球形填料中的摆环,静态和动态毛细管束模型以及球形填料中的残余饱和度。使用来自同步辐射源的X射线扫描直径为15 mm的填充有100至500μm范围内的沙粒的样品,空间分辨率为11μm。根据此几何形状,我们计算了主要排水,第一次吸水和次要排水使用这两种方法的磁滞回线的排水分支。对于LB方法,我们研究了磁滞回线对排水速度和吸水过程的依赖性。此外,我们通过模拟具有极值特征的整个几何体的几个子立方体中的滞后效应,进行了敏感性分析。使用基于Richards方程的逆模型,将预测的滞后保水曲线与实验室实验的结果进行比较。对于LB和MPN模型之间的磁滞回线,已经取得了很好的协议。 LB和MPN模型的磁滞回线的一次和二次排水比较好,并且实验结果也非常吻合,振幅略有偏移10%。观察到第一次吸水的差异,但也观察到两个不同实验运行之间的较大差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号