...
首页> 外文期刊>Advances in Water Resources >Coupled atmospheric, land surface, and subsurface modeling: Exploring water and energy feedbacks in three-dimensions
【24h】

Coupled atmospheric, land surface, and subsurface modeling: Exploring water and energy feedbacks in three-dimensions

机译:耦合的大气,陆地表面和地下模型:探索三维的水和能量反馈

获取原文
获取原文并翻译 | 示例

摘要

Human activities amplified by climate change pose a significant threat to the sustainability of water resources. Coupled climate-hydrologic simulations commonly predict these threats by combining shallow 1-D land surface models (LSMs) with traditional 2-D and 3-D hydrology models. However, these coupled models limit the moisture and energy-feedback dynamics to the shallow near-surface. This paper presents a novel analysis by applying an integrated variably-saturated subsurface/surface hydrology and heat transport model, HydroGeoSphere (HGS), as a land surface model (LSM). Furthermore, this article demonstrates the coupling of HGS to a simple 0-D atmospheric boundary layer (ABL) model. We then applied our coupled HGS-ABL model to three separate test cases and reproduced the strong correlation between the atmospheric energy balance to the depth of the groundwater table. From our simulations, we found that conventional LSMs may overestimate surface temperatures for extended drought periods because they underestimate the heat storage in the groundwater zone. Our final test case of the atmospheric response to drought conditions illustrated that deeper roots buffered the atmosphere better than shallow roots by maintaining higher latent heat fluxes, lower sensible heat fluxes, and lower surface and atmospheric temperatures. (C) 2015 Elsevier Ltd. All rights reserved.
机译:气候变化加剧的人类活动对水资源的可持续性构成了重大威胁。耦合的气候水文模拟通常通过将浅层一维陆地表面模型(LSM)与传统的2-D和3-D水文模型相结合来预测这些威胁。但是,这些耦合模型将水分和能量反馈动力学限制在浅表层附近。本文通过应用可变饱和的地下/地表水文和传热综合模型HydroGeoSphere(HGS)作为陆面模型(LSM)提出了一种新颖的分析方法。此外,本文演示了HGS与简单的0-D大气边界层(ABL)模型的耦合。然后,我们将耦合的HGS-ABL模型应用于三个独立的测试案例,并再现了大气能量平衡与地下水位深度之间的强相关性。从我们的模拟中,我们发现常规的LSM可能会高估干旱持续时间的地表温度,因为它们低估了地下水带中的热量存储。我们对大气对干旱条件响应的最终测试案例表明,较深的根部通过保持较高的潜热通量,较低的显热通量以及较低的地表和大气温度,对大气的缓冲比浅根更好。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Advances in Water Resources》 |2015年第12期|73-85|共13页
  • 作者单位

    Univ Waterloo, Dept Earth & Environm Sci, Waterloo, ON N2L 3G1, Canada|Aquanty Inc, Waterloo, ON N2L 5C6, Canada;

    Univ Waterloo, Dept Earth & Environm Sci, Waterloo, ON N2L 3G1, Canada|Aquanty Inc, Waterloo, ON N2L 5C6, Canada;

    Univ Waterloo, Dept Earth & Environm Sci, Waterloo, ON N2L 3G1, Canada|Aquanty Inc, Waterloo, ON N2L 5C6, Canada;

    Univ Waterloo, Dept Earth & Environm Sci, Waterloo, ON N2L 3G1, Canada|Univ Utah, Dept Atmospher Sci, Salt Lake City, UT 84112 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydrology; Land Surface; Groundwater; Surface Water; Modeling; Climate;

    机译:水文地表地下水地表水建模气候;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号