...
首页> 外文期刊>Advances in Water Resources >Simulating biodegradation under mixing-limited conditions using Michaelis-Menten (Monod) kinetic expressions in a particle tracking model
【24h】

Simulating biodegradation under mixing-limited conditions using Michaelis-Menten (Monod) kinetic expressions in a particle tracking model

机译:使用颗粒跟踪模型中的Michaelis-Menten(Monod)动力学表达式在混合受限条件下模拟生物降解

获取原文
获取原文并翻译 | 示例

摘要

Recent studies have demonstrated that effective field-scale bioremediation reactions rates are significantly lower than batch- or lab-scale rates, when the same law of mass action is used to represent the reaction at both scales. The mismatch is usually attributed to poor mixing of reactants brought about by heterogeneity. A recent method, based on a purely Lagrangian particle tracking (FT) theoretical development, successfully reproduces the effects of mixing-limited bimolecular reaction (A + B → C) from two benchmark experiments. In this numerical method, the reactants are represented by particles, and the small-scale physics are directly translated into a combination of two probabilities that govern whether: (1) reactant particles are collocated during a short time interval, and (2) two collocated particles favorably transform into a reaction. The latter is due to thermodynamics and is independent of scale of mixing. The former directly accounts for the degree of mixing in any system. We extend the application of the FT method to biodegradation, which is commonly characterized by more complex Michaelis-Menten (Monod) chemical kinetics. The advantage of the PT method is that it explains the variation of reaction rate based on mixing-controlled particle collisions instead of using empirical parameters. The FT method not only matches the Michaelis-Menten (Monod) equation under ideal conditions, but also captures the characteristics of non-ideal conditions such as imperfect mixing, disequilibrium, and limited availability of the active sites. We show these using hypothetical systems and also successfully apply the method to a column study of carbon tetrachloride biodegradation.
机译:最近的研究表明,当使用相同的质量作用定律表示两种规模的反应时,有效的现场规模的生物修复反应速率显着低于批量或实验室规模的速率。失配通常归因于异质性导致的反应物混合不良。基于纯拉格朗日粒子跟踪(FT)理论发展的最新方法,通过两个基准实验成功地再现了混合受限的双分子反应(A + B→C)的效果。在这种数值方法中,反应物由颗粒表示,小规模物理场直接转换为两个概率的组合,这些概率决定是否:(1)在短时间间隔内并列放置反应物颗粒,以及(2)两个并列放置颗粒有利地转变成反应。后者归因于热力学并且与混合比例无关。前者直接说明任何系统中的混合程度。我们将FT方法的应用扩展到生物降解,这通常以更复杂的Michaelis-Menten(Monod)化学动力学为特征。 PT方法的优点在于它可以解释反应速度的变化是基于混合控制的粒子碰撞,而不是使用经验参数。 FT方法不仅在理想条件下匹配Michaelis-Menten(Monod)方程,而且还捕获了非理想条件的特征,例如不完美的混合,不平衡以及活性位点的可用性有限。我们使用假设的系统显示这些,并且还成功地将该方法应用于四氯化碳生物降解的柱研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号