首页> 外文期刊>Advances in space research >Dynamic GPS-based LEO orbit determination with 1 cm precision using the Bernese GNSS Software
【24h】

Dynamic GPS-based LEO orbit determination with 1 cm precision using the Bernese GNSS Software

机译:基于动态GPS的LEO轨道轨道测定,使用Bernese GNSS软件使用1厘米的精确度

获取原文
获取原文并翻译 | 示例
       

摘要

The Astronomical Institute of the University of Bern (AIUB) has been performing GPS-based Precise Orbit Determination (POD) for a large variety of Low Earth Orbit (LEO) satellites since two decades. Traditionally, LEO orbits have been generated by a reduced-dynamic POD strategy using the Bernese GNSS Software, replacing an explicit modeling of non-gravitational forces by dedicated empirical orbit parametrizations. This LEO POD strategy can be advanced by two main developments: on the one hand, use is made of the GNSS Observation-Specific Bias (OSB) and clock products provided by the Center for Orbit Determination in Europe (CODE), allowing for the resolution of single-receiver GNSS carrier-phase ambiguities. On the other hand, the main focus of this article, a refined satellite non-gravitational force modeling strategy is constructed to reduce the amount of empirical parameters used to compensate for force modeling deficiencies. LEO POD is first performed for Sentinel-3, a satellite formation currently consists of two identical satellites -3A and -3B, which experience a similar in-flight environment and allow for direct POD performance comparisons. A third satellite Swarm-C, which flies at a lower altitude and has a more sophisticated surface geometry, is selected to validate the robustness of the new POD strategy. As a result, both the internal consistency checks and external orbit validations suggest superior orbit quality obtained for the three satellites for a time span of 1.5 years (7 June, 2018 to 31 December, 2019). The ambiguity resolution adds strong constraints to the orbits and the satellite non-gravitational force modeling leads to more tightly constrained (towards zero) pseudo-stochastic empirical parameters. The final orbit solutions agree with external orbit solutions and independent satellite laser ranging measurements at levels of sub-cm, indicating approximately 20% improvement w.r.t. the nominal reduced-dynamic orbit solutions. This suggests potential benefits to the space geodesy community that always pursues best-possible satellite orbits.
机译:自二十年以来,伯尔尼大学(AIUB)的天文学研究所一直在为大量低地球轨道(LEO)卫星进行GPS的精确轨道确定(POD)。传统上,使用Bernese GNSS软件的减少动态POD策略已经产生了Leo轨道,通过专用的经验轨道参数化替换非引力的显式建模。这个Leo Pod策略可以通过两个主要的发展提出:一方面,使用欧洲(代码)中的轨道测定中心提供的GNSS观察特定偏置(OSB)和时钟产品,允许解决方案单接收器GNSS载波相位歧义。另一方面,本文的主要重点是,构建了一种精致的卫星非重力建模策略,以减少用于补偿力量建模缺陷的经验参数的量。首先为Sentinel-3执行Leo Pod,目前由两个相同的卫星组成的卫星形成-3a和-3b,其体验类似的飞行中的环境,并允许直接的POD性能比较。选择在较低的高度并具有更复杂的表面几何形状的第三颗卫星群-c以验证新POD策略的鲁棒性。因此,内部一致性检查和外部轨道验证都表明了为三个卫星获得的卓越轨道质量为1.5岁(2018年6月7日至2019年12月31日)。模糊的分辨率为轨道增添了强的限制,卫星非重力模型导致更严格约束(朝向零)伪随机经验参数。最后的轨道解决方案与外轨解决方案和亚厘米水平的外轨解决方案和独立的卫星激光测量进行一致,表明约20%改善W.r.t.标称减少动态轨道解决方案。这表明总是追求最佳卫星轨道的空间大地社区的潜在利益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号