首页> 外文期刊>Advances in Engineering Software >An nth high order perturbation-based stochastic isogeometric method and implementation for quantifying geometric uncertainty in shell structures
【24h】

An nth high order perturbation-based stochastic isogeometric method and implementation for quantifying geometric uncertainty in shell structures

机译:基于Nth高阶扰动的随机异构测定方法和实现壳结构几何不确定性的实现

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents an n-th high order perturbation-based stochastic isogeometric Kirchhoff-Love shell method, formulation and implementation for modeling and quantifying geometric (thickness) uncertainty in thin shell structures. Firstly, the Non-Uniform Rational B-Splines (NURBS) is used to describe the geometry and interpolate the variables in a deterministic aspect. Then, the shell structures with geometric (thickness) uncertainty are investigated by developing an nth order perturbation-based stochastic isogeometric method. Here, we develop the shell stochastic formulations in detail (particularly, expand the random input (thickness) and IGA Kirchhoff-Love shell element based state functions analytically around their expectations via n-th order Taylor series using a small perturbation parameterε), whilst freshly providing the Matlab core codes helpful for implementation. This work includes three key novelties: 1) by increasing/utilizing the high order of NURBS basis functions, we can exactly represent shell geometries and alleviate shear locking, as well as providing more accurate deterministic solution hence enhancing stochastic response accuracy. 2) Via increasing the nth order perturbation, we overcome the inherent drawbacks of first and second-order perturbation approaches, and hence can handle uncertainty problems with some large coefficients of variation. 3) The numerical examples, including two benchmarks and one engineering application (B-pillar in automobile), simulated by the proposed formulations and direct Monte Carlo simulations (MCS) verify that thickness randomness does strongly affect the response of shell structures, such as the displacement caused by uncertainty can increase up to 35%; Moreover, the proposed formulation is effective and significantly efficient. For example, compared to MCS, only 0.014% computational time is needed to obtain the stochastic response.
机译:本文介绍了基于高阶扰动的随机异构仪Kirchhoff-Love壳方法,配方和实现,用于在薄壳结构中建模和量化几何(厚度)不确定性。首先,使用非均匀的Rational B样条(NURBS)来描述几何形状并在确定性方面内插入变量。然后,通过开发基于NTH阶扰动的随机异构法来研究具有几何(厚度)不确定性的壳结构。在这里,我们详细开发了壳随机制剂(特别是,通过使用小扰动参数,在他们的期望上分析了基于基于杂交的状态功能的随机输入(厚度)和IGA Kirchhoff-Love壳元素。提供MATLAB核心代码有助于实现。这项工作包括三个关键的Noveltize:1)通过增加/利用高阶的NURBS基本功能,我们可以完全代表壳地几何和缓解剪切锁定,以及提供更准确的确定性解决方案,从而提高随机响应精度。 2)通过增加第n个顺序扰动,我们克服了第一和二阶扰动方法的固有缺点,因此可以处理一些大的变异系数的不确定性问题。 3)由所提出的配方和直接蒙特卡罗模拟(MCS)模拟的数值示例,包括两个基准和一种工程应用(Automobile中的B柱)验证了厚度随机性是否强烈影响壳体结构的响应,例如不确定性引起的位移可以增加高达35%;此外,所提出的配方是有效和显着效率。例如,与MCS相比,仅需要0.014%的计算时间来获得随机响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号