...
首页> 外文期刊>Advances in Engineering Software >Comparative studies of metamodeling and AI-Based techniques in damage detection of structures
【24h】

Comparative studies of metamodeling and AI-Based techniques in damage detection of structures

机译:元模型与基于AI的技术在结构损伤检测中的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Despite advances in computer capacity, the enormous computational cost of running complex engineering simulations makes it impractical to rely exclusively on simulation for the purpose of structural health monitoring. To cut down the cost, surrogate models, also known as metamodels, are constructed and then used in place of the actual simulation models. In this study, structural damage detection is performed using two approaches. In both cases ten popular metamodeling techniques including Back-Propagation Neural Networks (BPNN), Least Square Support Vector Machines (LS-SVMs), Adaptive Neural-Fuzzy Inference System (ANFIS), Radial Basis Function Neural network (RBFN), Large Margin Nearest Neighbors (LMNN), Extreme Learning Machine (ELM), Gaussian Process (GP), Multivariate Adaptive Regression Spline (MARS), Random Forests and Kriging are used and the comparative results are presented. In the first approach, by considering dynamic behavior of a structure as input variables, ten metamodels are constructed, trained and tested to detect the location and severity of damage in civil structures. The variation of running time, mean square error (MSE), number of training and testing data, and other indices for measuring the accuracy in the prediction are defined and calculated in order to inspect advantages as well as the shortcomings of each algorithm. The results indicate that Kriging and LS-SVM models have better performance in predicting the location/severity of damage compared with other methods. In the second approach, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), to efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the MSEBI of structural elements is evaluated using a properly trained surrogate model. The results indicate that after determining the damage location, the proposed solution method for damage severity detection leads to significant reduction of computational time compared to finite element method. Furthermore, engaging colliding bodies optimization algorithm (CBO) by efficient surrogate model of finite element (FE) model, maintains the acceptable accuracy of damage severity detection.
机译:尽管计算机能力得到了提高,但是运行复杂的工程仿真所需要的巨大计算成本使得仅出于结构健康监控的目的而完全依靠仿真是不切实际的。为了降低成本,需要构建替代模型(也称为元模型),然后使用替代模型代替实际的仿真模型。在这项研究中,结构损坏检测使用两种方法进行。在这两种情况下,十种流行的元建模技术都包括反向传播神经网络(BPNN),最小二乘支持向量机(LS-SVM),自适应神经模糊推理系统(ANFIS),径向基函数神经网络(RBFN),最近距离大使用了邻居(LMNN),极限学习机(ELM),高斯过程(GP),多元自适应回归样条(MARS),随机森林和克里格法,并给出了比较结果。在第一种方法中,通过将结构的动态行为视为输入变量,构建,训练和测试了十个元模型以检测土木结构中损坏的位置和严重性。定义并计算了运行时间,均方误差(MSE),训练和测试数据的数量以及其他用于衡量预测准确性的指标的变化,以检查每种算法的优点和缺点。结果表明,与其他方法相比,Kriging和LS-SVM模型在预测损坏的位置/严重性方面具有更好的性能。在第二种方法中,在使用基于模态应变能的指标(MSEBI)精确定位结构的最终损伤之后,为了有效地减少在损伤严重性检测的优化过程中模型更新的计算成本,使用以下方法评估结构元素的MSEBI:训练有素的替代模型。结果表明,在确定损伤位置后,与有限元方法相比,所提出的损伤严重性检测解决方案可以显着减少计算时间。此外,通过有效的有限元替代模型(FE)模型进行碰撞体优化算法(CBO),可以保持可接受的损伤严重性检测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号