首页> 外文期刊>IEEE Transactions on Advanced Packaging >Packaging Actomyosin-Based Biomolecular Motor-Driven Devices for Nanoactuator Applications
【24h】

Packaging Actomyosin-Based Biomolecular Motor-Driven Devices for Nanoactuator Applications

机译:包装基于肌动蛋白的生物分子马达驱动装置,用于纳米执行器应用

获取原文
获取原文并翻译 | 示例
       

摘要

Biomolecular motors such as the muscle protein myosin with its partner protein actin hold great promise for actuation in hybrid nanoscale biomicroelectromechanical systems devices (bio-MEMS), particularly for future biomedical applications that involve highly localized delivery of biomolecules over short distances (e.g., micrometers) to specific tissue or cellular locations. Two fundamental issues in the construction and packaging of actomyosin-based nanoactuators are the ability to electrically insulate microelectrical components while maintaining both bio-compatibility and also compatibility with our functional assays for prototype development and identification of conditions for storage of assembled devices. Here, we show that sputter coating with SiO{sub}2 provides a straightforward method for electrical insulation that can be readily integrated into existing assays of myosin function in a bio-MEMS setting. We also report using in vitro motility analysis that both rabbit skeletal muscle heavy meromyosin (HMM) and fish (Fundulus heteroclitus) myosin remained functional for at least six days in a bio-MEMS setting when hydrating conditions were maintained. The speed of actin sliding was faster after six days when rabbit HMM was stored in 10% DMSO than in its absence, but there was no effect of DMSO during storage on fish myosin. The speed of actin translocation by fish myosin was significantly increased when adenosine 5'-triphosphate (ATP), the chemical energy source for myosin function, was replaced by the analog 2' deoxy-ATP, as has been previously reported for rabbit HMM. Taken together, these results provide new direction for modulation and control of actomyosin-based nanoactuators and also for long-term storage of assembled nanoactuators.
机译:生物分子马达,例如肌肉蛋白肌球蛋白及其伴侣蛋白肌动蛋白,有望在混合纳米级生物微机电系统设备(bio-MEMS)中致动,特别是对于涉及短距离(例如,微米)高度局部递送生物分子的未来生物医学应用而言到特定的组织或细胞位置。基于肌动球蛋白的纳米致动器的构造和包装中的两个基本问题是使微电组件电绝缘的能力,同时保持生物相容性以及与我们用于原型开发的功能性检测方法的兼容性以及对组装设备的存储条件的识别。在这里,我们显示了用SiO {sub} 2进行溅射镀膜提供了一种简单的电绝缘方法,该方法可以轻松地集成到生物MEMS环境中现有的肌球蛋白功能测定中。我们还报告了使用体外运动分析,当维持水合作用条件时,兔骨骼肌重肌球蛋白(HMM)和鱼(异丁香(Fundulus heteroclitus))肌球蛋白在生物MEMS设置中至少保持了六天的功能。当家兔HMM储存在10%DMSO中六天后,肌动蛋白的滑动速度要比不存在时要快,但是在储存过程中DMSO对鱼肌球蛋白没有影响。如以前关于兔子HMM的报道,当肌球蛋白功能的化学能源腺苷5'-三磷酸(ATP)被类似物2'脱氧-ATP取代时,鱼肌球蛋白的肌动蛋白转运速度显着提高。综上所述,这些结果为基于肌动球蛋白的纳米致动器的调制和控制以及组装纳米致动器的长期储存提供了新的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号